FORT WINGATE DEPOT ACTIVITY GALLUP, NM

FINAL OPEN BURNING/OPEN DETONATION AREA RCRA INTERIM STATUS CLOSURE PLAN PHASE IB - CHARACTERIZATION AND ASSESSMENT OF SITE CONDITIONS FOR THE GROUND WATER MATRIX

Prepared for:

U.S. ARMY CORPS OF ENGINEERS FORT WORTH DISTRICT

Prepared by:

PROGRAM MANAGEMENT COMPANY 835 Springdale Drive, Suite 201 Exton, PA 19341-2843

Requests for this document must be referred to: Commander, U.S. Army Corps of Engineers Fort Worth District Fort Worth, TX 76102; or Commander, Tooele Army Depot, UT 84074

29 December 1999

			<u>Page No.</u>
ES.0	EXEC	CUTIVE SUMMARY	ES-1
	ES.1	GROUND WATER INVESTIGATIONS	ES-2
	ES.1.	1 1996 Investigation	ES-2
	ES.1.2	2 1997 Investigation	ES-2
		ES.1.2.1 Closed OB/OD Area Ground Water System ES.1.2.2 Current OB/OD Area Ground Water System	ES-3 ES-3
	ES.1.3	3 1998 Investigation	ES-3
		ES.1.3.1 Closed OB/OD Area Ground Water System ES.1.3.2 Current OB/OD Area Ground Water System	ES-4 ES-4
	ES.2	CHEMICAL DATA ASSESSMENT	ES-5
	ES.2.1	1 Closed OB/OD Area Ground Water System	ES-6
	ES.2.2	2 Current OB/OD Area Ground Water System	ES-6
	ES.3	SUMMARY AND CONCLUSIONS	ES-7
	ES.3.1	<i>ES-7</i>	
	ES.3.2	ES-7	
1.0	INTR	ODUCTION	1-1
	1.1	PURPOSE/OBJECTIVE	1-1
	1.2	OVERVIEW	1-2
	1.3	OB/OD OPERATIONS	1-4
	1.3.1	Closed OB/OD Area	1-4
	1.3.2	Current OB/OD Area	1-5
	1.3.3	Regulatory Status of OB/OD Operations	1-5
	1.4	GEOLOGY OF THE OB/OD AREAS	1-9

i

			<u>Page No.</u>	~
2.0	GRO	UND WATER INVESTIGATIONS	2-1	
	2.1	1996 INVESTIGATION ACTIVITIES	2-1	
	2.1.1	Soil Boring and Monitoring Well Installation and Sampling	2-1	
	2.1.2	Surface Water and Sediment Sampling	2-3	
	2.1.3	1996 Investigation Results	2-4	
		2.1.3.1 Closed OB/OD Area Results 2.1.3.2 Current OB/OD Area Results	2-4 2-5	
	2.1.4	1996 Investigation Conclusions	2-5	
	2.2	1997 INVESTIGATION ACTIVITIES	2-6	
	2.2.1	Seismic Survey	2-6	
		2.2.1.1 Survey Design 2.2.1.2 Field Testing 2.2.1.3 Surface Seismic Reflection Acquisition 2.2.1.4 Seismic Data Processing	2-6 2-8 2-10 2-10	
	2.2.2	Borehole Installation and Logging	2-11	
	2.2.3	Results and Interpretation	2-12	
		2.2.3.1 Borehole Logging 2.2.3.2 Seismic Survey	2-12 2-12	
	2.2.4	Geologic Mapping and Fracture Trace Analysis	2-14	
	2.2.5	Selected Conceptual Hydrogeologic Model	2-15	
		2.2.5.1 Closed OB/OD Ground Water System 2.2.5.2 Current OB/OD Ground Water System	2-16 2-16	
	2.2.6	1997 Investigation Conclusions	2-18	
		2.2.6.1 Closed OB/OD Ground Water System 2.2.6.2 Current OB/OD Ground Water System	2-18 2-19	
	2.3	1998 INVESTIGATION ACTIVITIES	2-19	
	2.3.1	Soil Boring and Monitoring Well Installation and Sampling	2-20	-

			<u>Page No.</u>
		2.3.1.1 Bedrock Ground Water Sampling 2.3.1.2 Alluvial Ground Water, Surface Water, and Sediment	2-22
		Sampling 2.3.1.3 Installation-Wide Ground Water Elevation Survey	2-22 2-23
	2.3.2	Well Identification Survey	2-23
	2.3.3	Focused Geologic Mapping	2-23
	2.3.4	1998 Investigation Results	2-24
		2.3.4.1 Closed OB/OD Area Ground Water System Results 2.3.4.2 Current OB/OD Area Ground Water System Results	2-24 2-26
	2.3.5	Well Identification Survey	2-29
	2.3.6	1998 Investigation Conclusions	2-30
		2.3.6.1 Closed OB/OD Area Ground Water System 2.3.6.2 Current OB/OD Area Ground Water System	2-30 2-31
	2.4	CONCLUSIONS OF HYDROGEOLOGIC INVESTIGTATIONS	2-32
	2.4.1	Current OB/OD Area Ground Water System	2-32
	2.4.2	Closed OB/OD Area Ground Water System	2-32
3.0	CHEN	MICAL DATA ASSESSMENT	3-1
	3.1	BACKGROUND CONCENTRATIONS OF COCS	3-1
	3.1.1	Ground Water	3-1
	3.1.2	Soil	3-2
	3.1.3	Sediment	3-2
	3.1.4	Surface Water	3-3
	3.2	SCREENING CRITERIA	3-3

iii

		<u>Page No.</u>	_
3.2.1	Ground Water	3-3	
	3.2.1.1 USEPA Maximum Contaminant Levels 3.2.1.2 USEPA Region VI Risk-Based Screening Levels	3-3 3-3	
3.2.2	Soil and Sediment	3-4	
3.2.3	Surface Water	3-4	
3.3	RISK-BASED CLOSURE PERFORMANCE STANDARDS	3-4	
3.3.1	Ground Water	3-4	
3.3.2	Soil and Sediment	3-5	
3.3.3	Surface Water	3-6	
3.4	GROUND WATER SAMPLES	3-6	
3.4.1	Closed OB/OD Area Ground Water System	3-7	
	3.4.1.1 Mancos Shale Formation Ground Water	3-7	_
	3.4.1.1.1 Comparison to Background Levels	3-7	
	3.4.1.1.2 Comparison to Screening Criteria	3-7	
	3.4.1.1.3 Comparison to Closure Performance Standards	3-8	
	3.4.1.2 Dakota Sandstone Formation Ground Water	3-8	
	3.4.1.2.1 Comparison to Background Levels	3-8	
	3.4.1.2.2 Comparison to Screening Criteria	3-8	
	3.4.1.2.3 Comparison to Closure Performance Standards	3-8	
3.4.2	Current OB/OD Area Ground Water System	3-9	
	3.4.2.1 Undifferentiated Chinle Formation Ground Water	3-9	
	3.4.2.1.1 Comparison to Background Levels	3-9	
	3.4.2.1.2 Comparison to Screening Criteria	3-10	
	3.4.2.1.3 Comparison to Closure Performance Standards	3-10	
	3.4.2.2 Painted Desert Member Ground Water	3-11	
	3.4.2.2.1 Comparison to Background Levels	3-11	
	3.4.2.2.2 Comparison to Screening Criteria	3-12	
	3.4.2.2.3 Comparison to Closure Performance Standards	3-12	

		<u>Page No.</u>
	3.4.2.3 Sonsela Sandstone Member Ground Water	3-12
	3.4.2.3.1 Comparison to Background Levels	3-12
	3.4.2.3.2 Comparison to Screening Criteria	3-13
	3.4.2.3.3 Comparison to Closure Performance Standards	3-14
	3.4.2.4 Entrada Sandstone Member Ground Water	3-14
	3.4.2.4.1 Comparison to Background Levels	3-14
	3.4.2.4.2 Comparison to Screening Criteria	3-15
	3.4.2.4.3 Comparison to Closure Performance Standards	3-15
3.5	SOIL BORING SAMPLES	3-15
3.5.1	Closed OB/OD Area Ground Water System	3-15
	3.5.1.1 Comparison to Background Levels	3-16
	3.5.1.2 Comparison to Screening Criteria	3-16
	3.5.1.3 Comparison to Closure Performance Standards	3-16
3.5.2	Current OB/OD Area Ground Water System	3-16
	3.5.2.1 Comparison to Background Levels	3-16
	3.5.2.2 Comparison to Screening Criteria	3-17
	3.5.2.3 Comparison to Closure Performance Standards	3-17
3.6	SEDIMENT, SURFACE WATER, AND ALLUVIAL GROUND	
	SAMPLES	3-17
3.6.1	Closed OB/OD Area Ground Water System	3-18
	3.6.1.1 Sediment	3-18
	3.6.1.1.1 Comparison to Background Levels	3-18
	3.6.1.1.2 Comparison to Screening Criteria	3-18
	3.6.1.1.3 Comparison to Closure Performance Standards	3-18
	3.6.1.2 Surface Water	3-19
3.6.2	Current OB/OD Area Ground Water System	3-20
	3.6.2.1 Sediment	3-20
	3.6.2.1.1 Comparison to Background Levels	3-20
	3.6.2.1.2 Comparison to Screening Criteria	3-20
	3.6.2.1.3 Comparison to Closure Performance Standards	3-20
	3.6.2.2 Surface Water and Alluvial Ground Water	3-20

<u>Page No.</u>

4.0	SUM	IMARY AND CONCLUSIONS	4-1
	4.1	CLOSED OB/OD GROUND WATER SYSTEM	4-1
	4.2	CURRENT OB/OD GROUND WATER SYSTEM	4-2
5.0	REF	ERENCES	5-1
LIST	OF A	PPENDICES	
	A	MAPS	
	В	SOIL BORING LOGS	
	C MONITORING WELL CONSTRUCTION DIAGRAMS		
	D	HYDRAULIC CONDUCTIVITY RESULTS	
	Ε	SIESMIC REFELCTION SURVEY REPORT	
	F	DOWNHOLE ELECTRIC LOGS	

- G WELL IDENTIFICATION SURVEY RESULTS
- H ANALYTICAL DATA

LIST OF FIGURES

		<u>Following Page No.</u>
1-1	Installation Location	1-11
1-2	Historical Land Use	1-11
1-3	Site Map	1-11
1-4	Geologic Map	1-11
1-5	Stratigraphic Column	1-11
2-1	Surface Water, Sediment, Boring, and Monitoring Well	1-11
	Locations	Appendix A
2-2	Seismic Survey Locations	2-33
2-3	Interpreted Seismic Profiles of Lines 1 and 2	2-33
2-4	Interpreted Seismic Profiles of Lines 3, 4, and 5	2-33
2-5	Interpreted Seismic Profile of Line 6	2-33
2-6	Formation of Geologic Structures	2-33
2-7	Ground Water Systems	2-33
2-8	Cross Sections	Appendix A
3-1	Background Sample Locations	Appendix A
3-2	Samples Exceeding Closure Performance Standards,	
	Ground Water	Appendix A
3-3	Samples Exceeding Closure Performance Standards,	repondent 11
	Soil and Surface Water/Sediment	Appendix A

LIST OF TABLES

	Following P	age No.
2-1	Field Investigations	2-33
2-2	Soil Borings and Monitoring Wells	2-33
2-3	Well Completion Specifications	2-33
2-4	Well Development Data	2-33
2-5	Hydraulic Conductivity Data	2-33
2-6	Ground Water Elevations	2-33
2-7	Interpreted Depths to Tops of Formations	2-33
2-8	1998 Monitoring Wells	2-33
2-9	Depth to Sonsela Sandstone Member	2-33
3-1	Summary of Selected Background Values, Ground Water	3-21
3-2	Summary of Background Samples and Background Determination,	
	Soils	3-21
3-3	Summary of Selected Background Values, Sediments	3-21
3-4	Summary of selected background Values, Surface Water	3-21
3-5	Summary of Applicable Maximum Contaminant Levels (MCLs),	
	Ground Water	3-21
3-6	Summary of Region VI Human Health Medium Specific Screening	
	Levels, Ground Water	3-21
3-7	EPA Region VI Risk-Based Residential Soil Screening Levels	3-21
3-8	Summary of Closure Performance Standards, Ground Water	3-21
3-9	Soil Exposure Scenario Assumptions	3-21
3-10	Closure Performance Standards for Soil, Worker Exposure	3-21
3-11	Closure Performance Standards for Soil, Off-Site Recreational	
	User	3-21
3-12	October 1996 Monitoring Well Purging and Field Sampling Data	3-21
3-13	February 1997 Monitoring Well Purging and Field Sampling Data	3-21
3-14	October 1998 Monitoring Well Purging and Field Sampling Data	3-21
3-15	January 1999 Monitoring Well Purging and Field Sampling Data	3-21
3-16	Samples That Exceeded Background, Mancos Shale Formation,	
	Closed OB/OD Area Ground Water System	3-21
3-17	Samples That Exceeded Screening Criteria, Mancos Shale	
	Formation, Closed OB/OD Area Ground Water System	3-21
3-18	Samples That Exceeded Closure Performance Standards, Mancos	
	Shale Formation, Closed OB/OD Area Ground Water System	3-21
3-19	Samples That Exceeded Background, Dakota Sandstone Formation,	
	Closed OB/OD Area Ground Water System	3-21
3-20	Samples That Exceeded Screening Criteria, Dakota Sandstone	
	Formation, Closed OB/OD Area Ground Water System	3-21
3-21	Samples That Exceeded Closure Performance Standards, Dakota	·
	Sandstone Formation, Closed OB/OD Area Ground Water System	3-21

LIST OF TABLES (Continued)

	folla	wing page
3-22	Samples That Exceeded Background, Undifferentiated Chinle	••••
	Formation, Current OB/OD Area Ground Water System	3-21
3-23	Samples That Exceeded Screening Criteria, Undifferentiated Chinle	
-	Formation, Current OB/OD Area Ground Water System	3-21
3-24	Samples That Exceeded Closure Performance Standards,	
	Undifferentiated Chinle Formation, Current OB/OD Area Ground	
	Water System	3-21
3-25	Samples That Exceeded Background, Painted Desert Member,	
0 20	Current OB/OD Area Ground Water System	3-21
3-26	Samples That Exceeded Screening Criteria, Painted Desert Member,	
0 20	Current OB/OD Area Ground Water System	3-21
3-27	Samples That Exceeded Closure Performance Standards, Painted	0-21
0-41	Desert Member, Current OB/OD Area Ground Water System	3-21
3-28	Samples That Exceeded Background, Sonsela Sandstone Member,	J-71
3-20		3-21
2 20	Current OB/OD Area Ground Water System	5-21
3-29	Samples That Exceeded Screening Criteria, Sonsela Sandstone	2.24
0.00	Member, Current OB/OD Area Ground Water System	3-21
3-30	Samples That Exceeded Closure Performance Standards, Sonsela	2.24
0.04	Sandstone Member, Current OB/OD Area Ground Water System	3-21
3-31	Samples That Exceeded Background, Entrada Sandstone	
	Formation, Current OB/OD Area Ground Water System	3-21
3-32	Samples That Exceeded Screening Criteria, Entrada Sandstone	
	Formation, Current OB/OD Area Ground Water System	3-21
3-33	Samples That Exceeded Closure Performance Standards, Entrada	
	Sandstone Formation, Current OB/OD Area Ground Water System	3-21
3-34	Samples That Exceeded Background, Soil Borings, Closed OB/OD	
	Ground Water System	3-21
3-35	Samples That Exceeded Screening Criteria, Soil Borings, Closed	
	OB/OD Ground Water System	3-21
3-36	Samples That Exceeded Closure Performance Standards, Soil	
	Borings, Closed OB/OD Ground Water System	3-21
3-37	Samples That Exceeded Background, Soil Borings, Current OB/OD	
	Ground Water System	3-21
3-38	Samples That Exceeded Screening Criteria, Soil Borings, Current	
	OB/OD Ground Water System	3-21
3-39	Samples That Exceeded Closure Performance Standards, Soil	
	Borings, Current OB/OD Ground Water System	3-21
3-40	Samples That Exceeded Background, Sediments, Closed OB/OD	
~ 10	Area	3-21
3-41	Samples That Exceeded Screening Criteria, Sediments, Closed	
~ 11	OB/OD Area	3-21
		~

LIST OF TABLES (Continued)

	<u>foll</u>	owing page
3-42	Samples That Exceeded Closure Performance Standards, Sediments	 S,
	Closed OB/OD Area	3-21
3-43	Samples That Exceeded Background, Surface Water, Closed OB/OI	0
	Area	3-21
3-44	Samples That Exceeded Background, Sediments, Current OB/OD	
	Area	3-21
3-45	Samples That Exceeded Screening Criteria, Sediments, Current	
	OB/OD Area	3-21
3-46	Samples That Exceeded Closure Performance Standards, Sediments	
	Current OB/OD Area	3-21
3-47	Samples That Exceeded Background, Surface Water and Alluvial	
	Ground Water, Current OB/OD Area	3-21

LIST OF ACRONYMS

bgs	below ground surface
Blackhawk	Blackhawk Geometrics, Inc.
BMDO	Ballistic Missile Defense Organization
CDP	Common depth point
CFP	Closure Field Program
CMHP	Contaminated Materials Handling Plan
cm/sec	centimeters per second
COR	Contracting Officer's Representative
CPS	Closure Performance Standard
CY	Calendar year
ERM	ERM Program Management Company
ESPS	Environmental Services Program Support
EWG	Elastic wave generator
FSP	Field Sampling Plan
FWDA	Fort Wingate Depot Activity
DGPS	Differential Global Positioning System
GWQB	Ground Water Quality Bureau
HASP	Health and Safety Plan
HMX	Cyclotetramethylenetetranitramine
HRMB	Hazardous and Radioactive Materials Bureau
Hz	Hertz
MCL	Maximum Contaminant Level
NMED	New Mexico Environment Department
OB/OD	Open Burning/Open Detonation
OBDA	Open Burning Detonation Area
PMC	Program Management Company
QAPP	Quality Assurance Project Plan
RBL	Risk-based Screening Level
RCRA	Resource Conservation and Recovery Act
RDX	Hexahydro-1,3,5-trinitro-1,3,5-triazine
SEI	Safe Environment, Inc.
SPB	Seismic Profile Boring
TAL	Target Analyte List
TAT	Turn-around-time
TDS	Total dissolved solids

LIST OF ACRONYMS (continued)

TOC	Total organic carbon
TSS	Total suspended solids
UCL	Upper Confidence Limit
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
UXO	Unexploded ordnance
%	Percent

ES.0 EXECUTIVE SUMMARY

Fort Wingate Depot Activity (FWDA), an inactive United States Army depot under the administrative command of the Tooele Army Depot, Tooele, Utah, is undergoing final environmental restoration prior to property transfer/reuse in accordance with the Base Realignment and Closure Act. The primary mission of FWDA, when active, was to store, ship and receive materiel and to dispose of obsolete or deteriorated explosives and ammunition. Explosives demilitarization activities occurred at several facilities within the installation, including the Open Burning/Open Detonation (OB/OD) Areas. As part of the base closure activities, the OB/OD Areas are undergoing closure.

In order to facilitate closure at the OB/OD Areas, environmental characterization efforts are being conducted in accordance with the Approved Modification to the Final Interim Status Closure Plan, approved in correspondence from the New Mexico Environment Department (NMED) dated 10 April 1997.

As part of the Closure Plan approval process, NMED identified that additional environmental characterization efforts were required.

The Approved Final Closure Field Program (CFP) Work Plans, which were incorporated into the Approved Modification to the Final Interim Status Closure Plan described the conduct of the CFP in three phases:

Phase I - Characterization and Assessment of Site Conditions;

Phase II – Description, Evaluation, and Recommendation of Closure-Remedial Option; and

Phase III – Design, Construction and Operation of Selected Closure Option.

Completion of these three phases will result in the addressing of all additional information needs identified by NMED.

The environmental characterization efforts described in this Final Phase IB Report were focussed on the identification and assessment of ground water, soil borings, surface water, and sediment in the OB/OD Areas. The Final Phase IA Report, which has been provided under separate cover, focuses on soil, burning/detonation debris and residues, and other solid matrix materials within the OB/OD Areas.

ES.1 GROUND WATER INVESTIGATIONS

Ground water investigations have been conducted in the Closed and Current OB/OD Areas during calendar years (CYs) 1996, 1997, 1998, and 1999. These efforts consisted of monitoring well installation and sampling, a seismic profile survey, ground water elevation measurements, a well survey, geologic mapping, surface water sampling, and sediment sampling.

ES.1.1 1996 Investigation

A ground water investigation was performed in the OB/OD Areas in CY 1996 to assess the presence and quality of shallow ground water and characterize the shallow hydrogeologic regime. This investigation consisted of drilling and sampling of soil borings, completion of shallow and intermediate depth monitoring wells, performance of downhole video logging and slug tests on newly-installed monitoring wells, and collection of ground water, surface water, and sediment samples.

Three wells were installed in the Closed OB/OD Area and 11 wells were installed in the Current OB/OD Area. Explosive constituents were detected in wells installed within the Closed and Current OB/OD Areas, but the areal extent of contamination was not defined. Because of the water quality results and uncertainty associated with the hydrogeology, further subsurface characterization of the Current OB/OD Area was required to define the distribution of ground water and assess potential ground water transport pathways.

ES.1.2 1997 Investigation

Subsurface characterization efforts were conducted during CY 1997 to obtain additional data concerning the stratigraphy and structural setting of the OB/OD Areas. This investigation consisted of a surface seismic survey, borehole installation and logging, geologic mapping, and fracture trace analysis.

Data collected during the CY 1997 subsurface characterization and previous field efforts were compiled and interpreted to select the model that most likely describes the hydrogeologic setting of the OB/OD Areas. Two ground water systems have been identified in the OB/OD Areas. Uplifted and tilted sandstone and shale units forming a significant ridgeline known as the Hogback physically separate the ground water systems.

ES.1.2.1 Closed OB/OD Area Ground Water System

The Closed OB/OD Area ground water system contains the portion of the Closed OB/OD Area (Old Demolition Area) located west of the Hogback. In this area, a thin veneer of unconsolidated materials is present overlying a thick shale unit (Mancos Shale Formation) that is dipping steeply westward. Results of the CY 1997 characterization efforts were used to identify locations for monitoring wells proposed for completion in CY 1998. The wells were located to provide background ground water quality data, evaluate impacts to shallow ground water from identified waste disposal areas, determine the direction of shallow ground water flow within the Closed OB/OD Area ground water system, and evaluate the potential for migration of contaminated ground water toward the west, following the structural dip of the bedrock.

ES.1.2.2 Current OB/OD Area Ground Water System

The Current OB/OD Area ground water system contains the Current OB/OD Area and portions of the Closed OB/OD Area (Old Burning Ground and Demolition Landfill Area) located east of the Hogback. In this area, a thin veneer of unconsolidated materials is present overlying a thick sequence of shale units belonging to the Chinle Formation.

The seismic survey identified the Sonsela Sandstone Member as the waterbearing zone where explosive compounds were detected. The Sonsela Sandstone Member was correlated toward the upgradient direction (south) to identify the potential source of the explosive compounds. It can be concluded that shallow ground water, in contact with waste/residue areas within the Current OB/OD Area, is dissolving explosives and transporting these constituents into the Sonsela Sandstone Member. From the Current OB/OD Area, ground water within the Sonsela Sandstone Member migrates down dip, in a northern direction. Results of the CY 1997 characterization efforts were used to identify locations for monitoring wells proposed for completion in CY 1998. Monitoring well locations were selected to identify the downgradient extent of explosives in ground water.

ES.1.3 1998 Investigation

Hydrogeologic characterization efforts were performed in CY 1998 to confirm the conceptual hydrogeologic model of OB/OD Areas, confirm potential ground water transport pathways, and install a compliance monitoring well network. This investigation consisted of the completion of drilling and sampling of soil borings, installation of monitoring wells, electric logging and slug tests on newly-installed monitoring wells,

alluvial and bedrock ground water sampling, an installation-wide ground water elevation survey, an off-site well identification survey to evaluate potential receptors, and focussed geologic mapping.

ES.1.3.1 Closed OB/OD Area Ground Water System

Within the Closed OB/OD Area ground water system a thin veneer of unconsolidated material was identified that grades into competent shale of the Mancos Shale Formation. No ground water was detected in the unconsolidated materials, but ground water flow within this material would generally follow topography and be toward the center of the valley. Thus, the unconsolidated materials in the Closed OB/OD Area ground water system may act as a closed basin with limited lateral movement of shallow ground water.

Shallow ground water was encountered in the Mancos Shale Formation and the Dakota Sandstone Formation. An additional boring drilled into the Dakota Sandstone Formation in the location thought most likely to receive infiltration of surface water and shallow ground water contained no free water throughout the entire thickness of the Dakota Sandstone Formation. No evidence of contamination was identified in any of these locations. Thus, it is considered unlikely that installation activities have impacted the Dakota Sandstone Formation. Future impact to this formation is also considered unlikely.

ES.1.3.2 Current OB/OD Area Ground Water System

Within the Current OB/OD Area ground water system, a thin veneer of unconsolidated materials is present overlying a thick sequence of shale units belonging to the Chinle Formation. Water table conditions are present only within the thin unconsolidated materials present on top of the weathered shale bedrock. This shallow ground water may discharge to surface water pools within the Current OB/OD Area arroyo; however, no evidence of significant surface water flow has been observed since October 1996. Based upon these data, the potential of exposure to shallow ground water via its discharge to surface water is thought to be sporadic; therefore, this is not considered to be a complete exposure pathway.

Ground water flow within the weathered and competent shale bedrock, located in the Current OB/OD Area, is dominated by fracture flow. It is considered likely that the Sonsela Sandstone Member subcrops beneath the unconsolidated materials and fractured shale located in and near the arroyo of the Current OB/OD Area. Shallow ground water in contact with the waste/residue areas appears to be dissolving explosives and transporting these constituents into the Sonsela Sandstone Member. From

the Current OB/OD Area, ground water within the Sonsela Sandstone Member migrates down dip, in a northern direction. A monitoring well network has been installed along this flow path that characterizes the ground water system and provides a compliance monitoring well network.

Intense structural deformation associated with formation of the Hogback prevents correlation of lithologic units from the eastern and central portions of the Current OB/OD Area ground water system toward the western portion. This lack of correlation precludes identification of the ground water flow paths in a westward direction.

Extensive shale units underlying the Current OB/OD Area ground water system, being of inherently lower primary permeability than surrounding sandstone units, inhibit vertical movement of ground water to underlying potable aquifer units, such as the Glorieta Sandstone. The shale units also restrict movement of potentially impacted ground water from the Current OB/OD Area down dip toward the west. If limited transport of impacted ground water toward the west were to occur, it would be at a significantly greater stratigraphic depth than the overlying Dakota and Gallup Sandstones, which are used as potable ground water sources in areas west of FWDA. Thus, it is considered highly unlikely that exposure to this ground water would occur, and this is not considered a complete exposure pathway.

ES.2 CHEMICAL DATA ASSESSMENT

The chemical data derived from the sampling and analysis of ground water, soil, sediment, and surface water samples were assessed by comparison to select environmental quality benchmark values. Chemical data were sequentially screened against: 1.) Area-specific background values, 2.) Screening criteria including U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) and USEPA Region VI risk-based screening levels (RBLs), and 3.) Closure Performance Standards (CPSs) developed for the OB/OD Areas. RBLs based upon a residential exposure scenario were used as screening criteria. The RBLs provide a conservative bias during this stage of the data assessment process. Because the OB/OD Areas will be held under Army control in perpetuity, CPSs that are based upon more realistic future exposure scenarios were also used to evaluate the data.

ES.2.1 Closed OB/OD Area Ground Water System

Three monitoring wells were installed within Closed OB/OD Area ground water system, two screened within the Mancos Shale Formation and one screened within the Dakota Sandstone Formation. The only constituent detected in the Mancos Shale Formation ground water that exceeded the CPS was ammonia. No constituent concentrations detected in ground water from the Dakota Sandstone Formation exceed the CPSs.

Four borings were completed in the Closed OB/OD Area ground water system. Three of these were completed as monitoring wells; one did not encounter free water and was abandoned. Soil samples were collected from the four borings and submitted for chemical analyses. No soil constituent concentrations exceeded the CPSs.

Ten sediment samples were collected in the Closed OB/OD Area. Selected constituent concentrations exceeded the CPSs, but were not detected in the sediment samples located downgradient. Phosphorus exceeded the CPS; however, this does not necessarily represent an unacceptable risk to human health under the selected future land use scenarios.

Ten surface water samples were collected in the Closed OB/OD Area. No constituents were present at concentrations exceeding background levels in the most downgradient sample; thus, it does not appear that dissolved contaminants are being transported out of the Closed OB/OD Area via surface water flow.

ES.2.2 Current OB/OD Area Ground Water System

Sixteen bedrock monitoring wells were installed within the Current OB/OD Area ground water system, ten screened within undifferentiated intervals of the Chinle Formation, one screened within the Painted Desert Member, four screened within the Sonsela Sandstone Member, and one screened within the Entrada Sandstone Formation. The concentrations of a single explosive compound and five metal/inorganic constituents exceeded the CPSs in wells screened within the undifferentiated Chinle Formation. Two metals were detected at concentrations exceeding the CPSs in the well screened in the Painted Desert Member. Three inorganic/metal constituents were detected at concentrations exceeding the CPSs in wells screened within the Sonsela Sandstone Member. The only constituent detected in the Entrada Sandstone Formation that exceeded the CPS was ammonia.

Thirty-three borings were completed in the Current OB/OD Area ground water system. Eighteen of these were completed as monitoring wells. Soil

samples were collected from the borings and submitted for chemical analyses. Two inorganic/metal constituents were detected in soils at concentrations exceeded the CPSs.

Fifteen sediment samples were collected from 10 locations in the Current OB/OD Area. No sediment constituent concentrations exceeded the CPSs.

Eighteen surface water and alluvial ground water samples were collected in the Current OB/OD Area. Explosive compounds were detected in seven of the samples, and between five and 17 individual inorganic/metal constituents were detected at concentrations greater than background. It does not appear that dissolved explosives are being transported out of the Current OB/OD Area via surface water flow.

ES.3 SUMMARY AND CONCLUSIONS

ES.3.1 Closed OB/OD Area Ground Water System

It is considered unlikely that installation activities have impacted ground water within the Dakota Sandstone Formation which is used a source of potable water. It is also considered unlikely that ground water in this formation will be impacted in the future. Monitoring of ground water quality within the Mancos Shale Formation and the Dakota Sandstone Formation is planned. Sampling will be conducted on a quarterly basis for the period of one year, starting in January 2000. At the end of four quarters of ground water monitoring, the results will be compiled and potential trends evaluated. At that time, the need for continued ground water monitoring will be assessed and discussed with the appropriate regulatory agencies.

ES.3.2 Current OB/OD Area Ground Water System

The potential of exposure to shallow ground water via its discharge to surface water is thought to be sporadic and is not considered a complete exposure pathway. The potential exposure to impacted ground water within the undifferentiated Chinle Formation is addressed by the potential exposure considerations for the Sonsela Sandstone Member. It is considered unlikely that installation activities have impacted ground water within the Entrada Sandstone Formation and the Dakota Sandstone Formation. It is also considered unlikely that ground water in these formations will be impacted in the future, or that exposure to this ground water would occur. Therefore, exposure to ground water within these formations is not considered to be a complete pathway.

Ground water contamination was delineated in the Painted Desert Member and the Sonsela Sandstone Member. Ground water flow within these intervals is toward the north, following the bedrock dip and topography. Monitoring wells located downgradient of the lateral extent of contaminated ground water provide downgradient sentinel monitoring wells screened in these intervals.

Future monitoring of ground water quality within the Chinle Formation, Painted Desert Member, and Sonsela Sandstone Member is planned. Sampling will be conducted on a quarterly basis for the period of one year, starting in January 2000. At the end of four quarters of ground water monitoring, the results will be compiled and potential trends evaluated. At that time, the need for continued ground water monitoring will be assessed and discussed with the appropriate regulatory agencies.

1.0 INTRODUCTION

This deliverable (ELIN A009) is the Final Phase IB Report for the environmental characterization of the ground water matrix at the Open Burning/ Open Detonation (OB/OD) Areas at Fort Wingate Depot Activity (FWDA), Gallup, NM. The work elements described within this document were conducted by Program Management Company (PMC) [Formerly ERM Program Management Company (ERM)] of Exton, PA. This document is being prepared to fulfill requirements of Delivery Order No. 0005, under the Army Environmental Services Program Support (ESPS) contract (Contract DACA31-94-D-0067). Contracting Officer's Representative (COR) and technical oversight responsibilities for the tasks described in this document were provided by the U.S. Army Corps of Engineers (USACE), Fort Worth District.

1.1 PURPOSE/OBJECTIVE

The technical scope of work elements described in this Final Report consist of a number of field and data evaluation tasks performed at the OB/OD Areas at FWDA. These tasks are:

- Description of regional and site-specific geology and hydrology to develop a conceptual model of the hydrogeologic regime;
- Development of background ground water constituent concentrations for the OB/OD Areas;
- Assessment of the extent of ground water contamination; and
- Characterization of fate and transport mechanism(s) for detected constituents of concern.

These tasks, which were an integral component of the OB/OD Areas Closure Field Program (CFP), have been performed to support the Final Resource Conservation and Recovery Act (RCRA) Interim Status Closure Plan process for the OB/OD Areas. The results, findings, and conclusions and recommendations of the environmental characterization efforts for ground water, soil borings, surface water, and sediment are presented in this Final Phase IB Report. All of the efforts conducted as part of Phase IB of the CFP were described in the following project support documents that were submitted as part of the Approved Final Interim Status Closure Plan (ERM, 1996a):

1-1

1996 Project Plans

- Final OB/OD Area CFP Field Sampling Plan (FSP) and Contaminated Materials Handling Plan (CMHP), prepared by ERM, dated 21 May 1996 (ERM, 1996b);
- Final OB/OD Area CFP Quality Assurance Project Plan (QAPP), prepared by ERM, dated 21 May 1996 (ERM, 1996c); and
- Final OB/OD Area CFP Health and Safety Plan (HASP), prepared by ERM, dated 21 May 1996 (ERM, 1996d).

1997 Project Plans

- Final OB/OD Area Work Plan prepared by ERM, dated 1 August 1997 (ERM, 1997a); and
- Final HASP prepared by ERM, dated 1 August 1997 (ERM, 1997b).

1998 Project Plans

- Final OB/OD Area Work Plan prepared by PMC, dated 29 May 1998 (PMC, 1998a);
- Final FSP prepared by PMC, dated 9 June 1998 (PMC, 1998b);
- Final QAPP prepared by PMC, dated 9 June 1998 (PMC, 1998c); and
- Final HASP prepared by PMC, dated 17 June 1998 (PMC, 1998d).

1.2 OVERVIEW

FWDA is an inactive United States Army depot under the administrative command of the Tooele Army Depot, Tooele, Utah. The former mission of FWDA was to store, ship, and receive materiel and to dispose of obsolete or deteriorated explosives and ammunition. The active mission of FWDA ceased and the installation closed in January 1993. The installation is undergoing final environmental restoration prior to property transfer/reuse.

FWDA is situated in northwestern New Mexico, in McKinley County. The installation is located 8 miles east of Gallup, and approximately 130 miles west of Albuquerque on US Route 66 (Figure 1-1). The installation itself contains approximately 150 miles of internal roads. FWDA is bordered on the west by Zuni tribal lands, on the south and east by the

РМС

Cibola National Forest, and on the north by Red Rock State Park. Although the history of FWDA dates back to 1850 (Old Fort Wingate), almost all of the present installation facilities were constructed after 1941.

FWDA occupies approximately 34 square miles (22,120 acres) of land with facilities formerly used to operate a reserve storage activity providing for the care, preservation, and minor maintenance of assigned commodities, primarily ammunition and ordnance. The installation mission included the disassembly and demilitarization of outdated and unserviceable munitions. Ammunition maintenance facilities existed for the clipping, linking, and repackaging of small arms ammunition.

The installation can be divided into several areas based upon location and historical land use (Figure 1-2). These major land-use areas include:

- The Administration Area located in the northern portion of the installation and encompassing approximately 800 acres; contains former office facilities, housing, equipment maintenance facilities, warehouse buildings, and utility support facilities;
- The Workshop Area located south of the Administration Area and encompassing approximately 700 acres; an industrial area containing former ammunition maintenance and renovation facilities;
- The Magazine (Igloo) Area covering approximately 7,400 acres in the central portion of the installation and encompassing ten Igloo Blocks (A through H, J and K) consisting of 732 earth-covered igloos and 241 earthen revetments previously used for storage of munitions;
- Protection and Buffer Areas encompassing approximately 5,800 acres consisting of buffer zones surrounding the former magazine and demolition areas; these areas are located adjacent to the eastern, northern, and western boundaries of the installation;
- The Southern Properties located in the southern portion of the installation and encompassing approximately 4,935 acres; consists of forested plateau and mountainous terrain, and
- The Open Burning and Detonation Area (OBDA) located within the west central portion of the installation; the OBDA can be separated into two areas, the Closed OB/OD Area and the Current OB/OD Area.

The focus of the environmental characterization efforts described in this Draft Report is on ground water and surface water within the OB/OD Areas.

ESPS.5-FWDA OB/OD-PHASE IB.1-00805.81-12/29/99

PMC

1-3

As discussed above, the active mission of the installation ceased in January 1993 and the installation is currently under caretaker status. However, a number of tenant operations are currently being maintained at FWDA. In addition, approximately one-half of the central portion of the installation is being used by the Ballistic Missile Defense Organization (BMDO). These activities are expected to continue during the post-closure period. Currently, access to the installation is maintained by on-site Caretakers.

During the active mission of the installation, as part of routine operations, FWDA handled and stored munition items. Each year, quantities of munitions and munitions-related material were disposed of as waste. These wastes included out-of-date and obsolete explosives, propellants, munitions and munitions components, and items in storage that had failed quality assurance tests. Other related waste for disposal included material that may have potentially become contaminated by munitions during storage and handling. Disposal of these items at FWDA was accomplished by open burning and open detonation.

Historic OB/OD activities at FWDA were conducted primarily within the OB/OD Areas. The Closed OB/OD Area was used from 1948 to 1955. After 1955, burning and detonation operations at the installation were performed within the Current OB/OD Area until installation closure in 1993.

1.3 OB/OD OPERATIONS

1.3.1 Closed OB/OD Area

The Closed OB/OD Area includes the Old Burning Ground and Demolition Landfill Area and the Old Demolition Area (Figure 1-3). The Old Burning Ground and Demolition Landfill Area are located in Fenced Up Horse Valley on the eastern flank of the main Hogback ridge in an area dominated by interlayered sandstones and shales. The Old Demolition Area is located within a shale terrain situated between two sandstone ridge lines forming the Hogback and is on the western side of the main Hogback ridge.

The Old Burning Ground and Demolition Landfill Area consist of approximately 26 acres and were used from 1948 until the late 1950s to dispose of explosives contaminated waste from the TNT Washout Plant and old equipment from the TNT drying and flaking operations. In the mid-1950s, the area was permitted by the Army to open burn up to 30,000

pounds of explosives at a time. It was reported that debris was exposed by erosion in the arroyo at depths in excess of 10 feet. The debris reportedly included shell casings, metal strapping material, and other metal materials. The extent of landfilling in this area was not documented, but was known to be constrained on the northwest by bedrock exposures along the Hogback, and on the southeast by the arroyo in Fenced Up Horse Valley.

The Old Demolition Area consists of approximately 71 acres. This area was identified by the Army in 1981. Explosives from the holding tank of the TNT Washout Plant were transported to this area and burned in the open. The exact boundaries of this area are not well documented. However, three mounds were identified and were designated as potentially containing residue from the burning of white phosphorous rounds.

1.3.2 Current OB/OD Area

The Current OB/OD Area is located on the eastern side of the Hogback, south of Fenced-up Horse Valley (Figure 1-3). This area is approximately 38 acres in size and includes a number of detonation craters and the Burning Ground Area. In addition, an arroyo bisects the area, traversing (downstream) from south to north. The Current OB/OD Area was actively utilized between 1955 and January 1993.

The Burning Ground Area is located in a valley immediately east of the main arroyo within the Current OB/OD Area and north of the detonation craters. The Burning Ground Area is approximately 2 acres in size. From 1955 until 1993, it was used as a site to burn propellants and propellant-contaminated materials.

1.3.3 Regulatory Status of OB/OD Operations

Beginning in 1980, operations in the Current OB/OD Area were permitted and regulated under RCRA Interim Status. In response to base closure activities, Interim Status Closure of the OB/OD Areas was implemented. An Interim Status Closure Plan was initially submitted to the New Mexico Environment Department (NMED) on 6 November 1992 (ERM, 1992) to address final closure of the regulated operations within the Current OB/OD Area. During finalization of the Closure Plan, site investigations and evaluations, as well as dialogue with NMED, established the boundary of the regulated unit requiring closure. The area of the regulated unit consisted of the Closed and Current OB/OD Areas as well

PMC

1-5

as a delineated boundary area representing the maximum observed extent of unexploded ordnance (UXO). The historic demilitarization and/or treatment operations at the OB/OD Areas, through detonation of accumulated munitions, ammunition, etc., had over time resulted in the areal expulsion or "kick-out" of soil and debris and potentially untreated UXO.

The closure plan was approved by NMED in correspondence dated 20 January 1994 (NMED, 1994a). The approved closure plan included: the Final Interim Status Closure Plan, dated 1 March 1993 (ERM, 1993a); Attachment 1, Proposed Interim Status Closure Field Screening Approach, dated 20 October 1993 (ERM, 1993b); and a list of "Conditions for Closure Plan Approval" generated by NMED and attached to the approval letter. The approved closure plan included a phased approach to closure including environmental characterization sampling. Site conditions, primarily concerns for safety in the OB/OD Areas, were then determined to preclude the performance of "clean closure".

A Modification to the Final Interim Status Closure Plan was submitted to NMED on 23 May 1994 (ERM, 1994a). The results of preliminary environmental characterization efforts conducted within the OB/OD Areas, conclusions, and modified (i.e., non-clean closure) conceptual proposed closure approach were presented in the Modification. Several comments that required additional investigation were provided by NMED in a Notice of Deficiency (NOD) letter to the Army dated 26 August 1994 (NMED, 1994b). These comments were considered during preparation of a Draft Final Interim Status Closure Work Plan, dated November 1994 (ERM, 1994b), which presented a generalized approach to characterization of the OB/OD Areas.

The Modification to the Final Interim Status Closure Plan and the Draft RCRA Interim Status Closure Work Plan together were considered by NMED to be an Amendment requested by the Army to the Approved Closure Plan. An NOD letter from NMED dated 18 July 1995 (NMED, 1995) outlined deficiencies with this Amendment and requested details regarding the proposed characterization of the OB/OD Areas.

The Army submitted the Draft Final OB/OD Areas CFP Work Plans to NMED on 18 September 1995. The CFP Work Plans presented details regarding the proposed characterization of the OB/OD Areas, in response to the 18 July 1995 NOD letter.

On 21 May 1996, the Army submitted to NMED the Final RCRA Interim Status Closure Plan (ERM, 1996a). This submittal incorporated the Final

1-6

CFP Work Plans, consisting of the aforementioned FSP and CMHP (ERM, 1996b), QAPP (ERM, 1996c), and HASP (ERM, 1996d).

NMED issued a letter to the Army on 18 June 1996 (NMED, 1996) stating that these documents met "the substantive requirements of the New Mexico Hazardous Waste Management Regulations" and a public comment period was initiated. A period of document review, comment preparation, comment resolution meetings, and comment response spanned the remainder of the 1996 and a portion of the 1997 calendar years. Approval of the Final RCRA Interim Status Closure Plan and the incorporated Final CFP Work Plans was received from NMED in a letter dated 10 April 1997 (NMED, 1997).

The net effect of the 10 April 1997 Approval of the Final RCRA Interim Status Closure Plan (ERM, 1996a) and the Final CFP Work Plans (ERM, 1996b-d) was the development of the CFP that consisted of three phases:

- Phase I Characterization and Assessment of Site Conditions;
- Phase II Description, Evaluation, and Recommendation of Closure-Remedial Options; and
- Phase III Design, Construction & Operation of Selected Closure Option.

Because of safety concerns related to the presence of UXO, as well as seasonal site access limitations related to winter weather, and fiscal year funding cycles of the federal government, the CFP for the OB/OD Areas was conducted over a number of summer field seasons. The data presented in this Final Phase IB Report were derived from field sampling efforts conducted in 1996, 1997, 1998, and 1999 and are focussed on ground water, soil borings, surface water, and sediments within the OB/OD Areas. Completion of these efforts represents Phase IB of the CFP. The results of Phase IA of the characterization/assessment effort, which was focussed on the soils, burning/detonation debris and residues, and other solid matrix materials within the OB/OD Areas, have been reported in a separate Final Phase IA Report (PMC, 1999).

The Final RCRA Interim Status Closure Plan (ERM, 1996a) incorporated performance of a CFP to perform required environmental sampling, site characterization, and engineering evaluations to support finalization of the Closure Plan and select a closure/remedial option for implementation.

Several comments provided by NMED in the 26 August 1994 NOD letter required additional environmental characterization efforts, as described below.

- 1. Estimate the type and amount of hazardous waste and hazardous waste residues for each discrete area that could potentially require closure activities;
- 2. Perform a vertical characterization of contamination in the detonation craters;
- 3. Characterize the potential vertical component of impact within the detonation craters. Specifically, provide data addressing the potential for fracturing bedrock that could provide a conduit for migration of contaminants into deeper bedrock or ground water zones;
- 4. Perform ground water monitoring in deeper zones beneath the detonation craters to supplement information on potential impacts;
- 5. Set screening action levels at the analytical detection limits, and close as a landfill, areas with constituent concentrations exceeding residential exposure scenario human health risk levels;
- 6. Provide details of how debris piles will be removed, how the disposition of materials will be performed, and how confirmatory sampling and analysis will be conducted; and
- 7. Provide a preliminary or conceptual (15%) engineering design and construction procedures for the proposed closure approach.

Items 1 and 2, as described above, have been comprehensively addressed in the Phase IA Report (PMC, 1999). Item 3, which sought to estimate the potential for the migration to ground water of contaminants derived from the detonation activities by assessing the ability of the detonations to fracture the underlying bedrock and create ground water conduits, was not conducted (as discussed in Section 2.8; PMC, 1999). Ground water evaluation (Item 4) is the primary focus of this Phase IB Report.

Item 5 has been addressed in Phase IA Report (PMC, 1999). Items 6 and 7 will be addressed in future phases of the closure process.

1.4 GEOLOGY OF THE OB/OD AREAS

Geologic mapping of the OB/OD Areas was performed in Calendar Year (CY) 1997 by the U.S. Geological Survey (USGS) located in Flagstaff, Arizona. Mapping tasks are described in Section 2.2.4 of this report. Results are presented below to provide a detailed description of the geologic and stratigraphic setting of the OB/OD Areas.

Geologic Summary

FWDA is underlain primarily by Triassic mudstone and sandstone layers that are tilted gently to the northwest. In the western and southern portions of the installation, however, Jurassic and Cretaceous sandstone and shale layers are exposed along the Nutria Monocline (the 'Hogback'), which is a steeply west dipping, north trending monoclinal fold.

Stratigraphy

The Petrified Forest Formation (Triassic) comprises greater than 75 percent of the surface exposure at FWDA and all of the exposed rock east of the Hogback within the OB/OD Areas (Figures 1-4 and 1-5). The Petrified Forest Formation consists primarily of mudstone, shale, and minor amounts of muddy sandstone. A middle member consisting of a thick, continuous sandstone layer (Sonsela Sandstone Member) separates the upper and lower members.

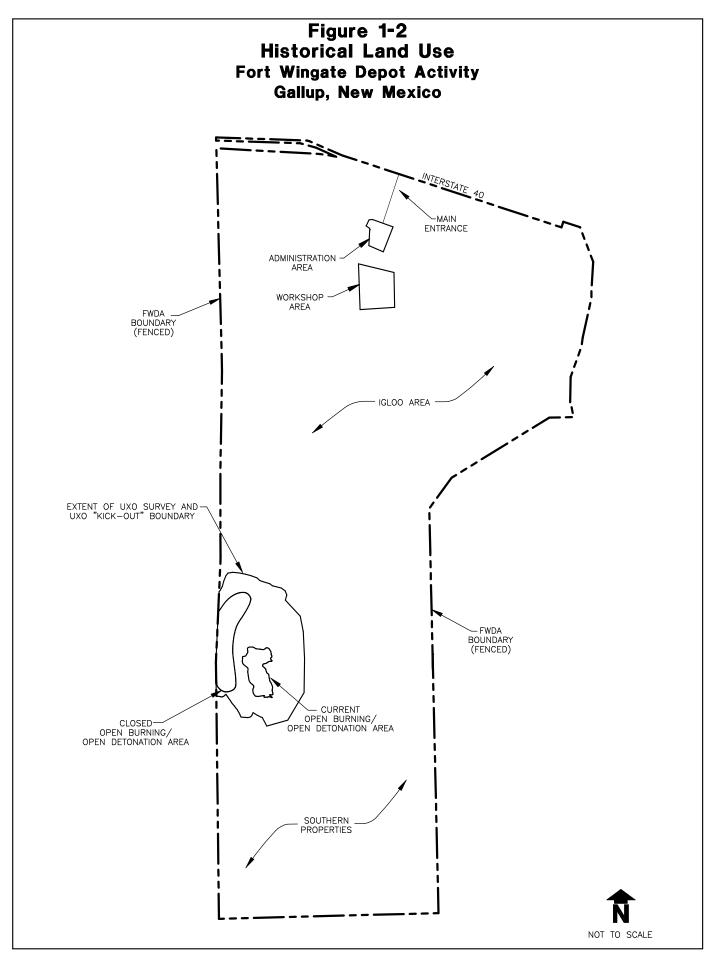
The Painted Desert Member is the upper member of the Petrified Forest Formation. This consists of mudstone, siltstone, sandy-mudstone, and lenticular sandstone layers. Sandstone lenses within the Painted Desert Member are thin (less than 20 feet thick), laterally discontinuous, and contain high quantities of very fine, muddy matrix. As a result, the apparent permeability of these lenses, and the Painted Desert Member as a whole, is very low.

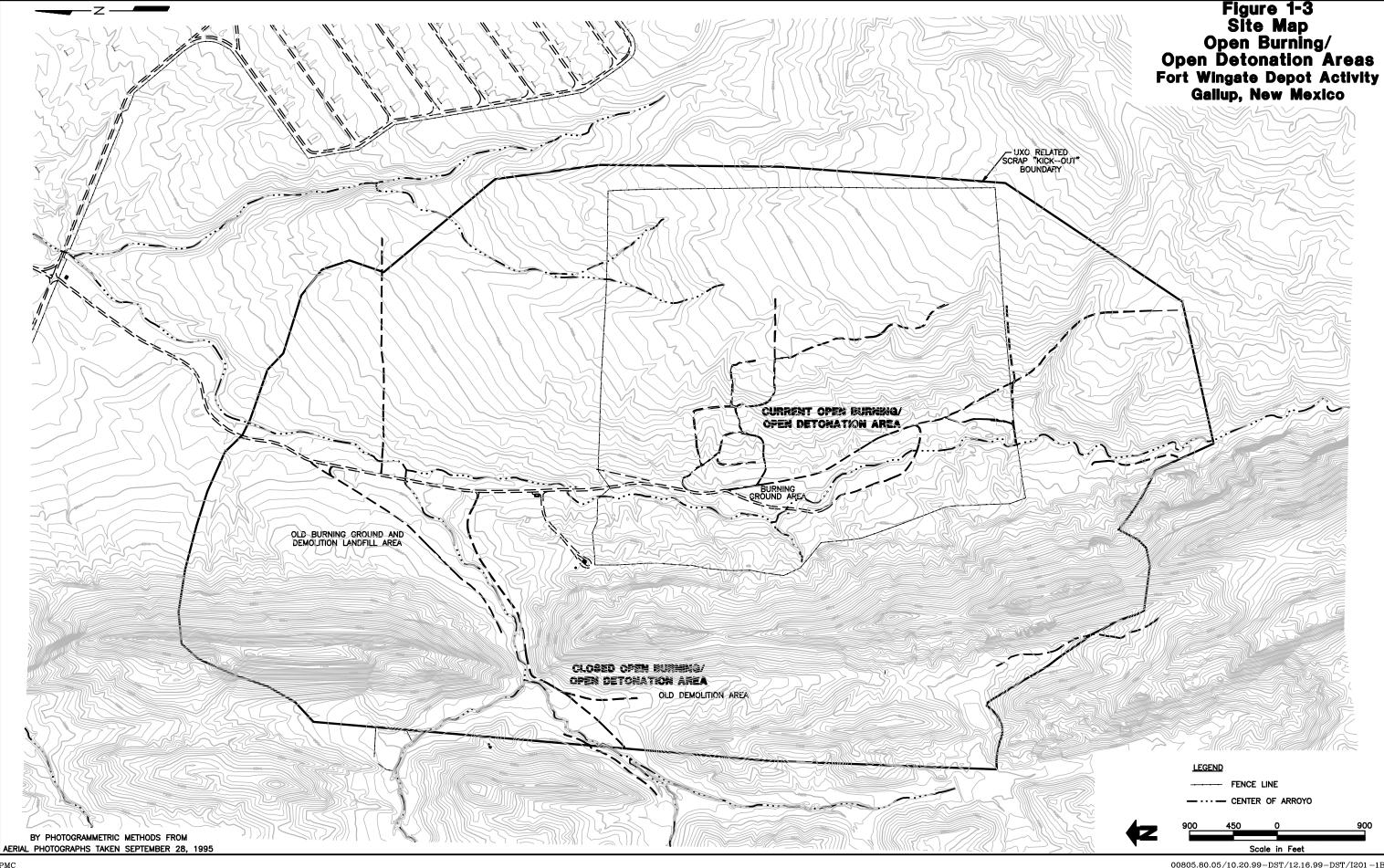
The Sonsela Sandstone Member has a variable thickness (20 to 80 feet thick) and is laterally continuous. This unit is a clean, well-sorted, quartzose sandstone that contains very small amounts of matrix and therefore has a high apparent permeability. Below the Sonsela Sandstone Member is the lower member of the Petrified Forest Formation, the Blue Mesa Member. The lithology and apparent permeability of the Blue Mesa Member is similar to that of the Painted Desert Member.

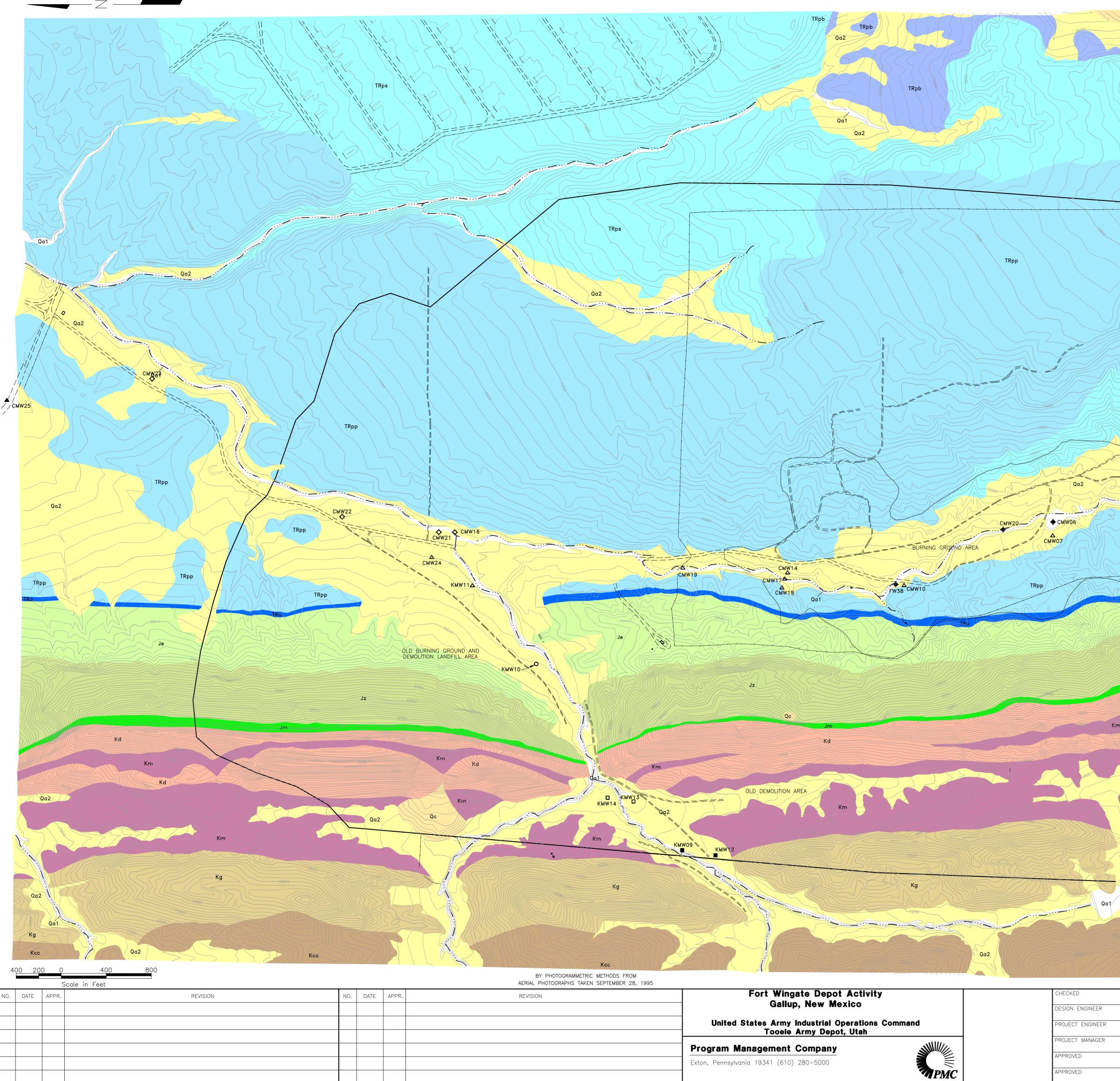
Younger Jurassic and Cretaceous sandstone and shale layers are exposed along the Hogback from the main arroyo in the Current OB/OD Area

west to the FWDA boundary. The Jurassic Entrada Sandstone, Zuni Sandstone, and Morrison Formation account for approximately 1,200 feet of section and consist of massive, cross-bedded sandstones with a high apparent permeability. To the west, and stratigraphically above these units, is a series of Cretaceous shales and sandstones including the Dakota Sandstone (approximately 200 feet thick), the Mancos Shale (approximately 600 feet thick), and the Gallup Sandstone (approximately 200 feet thick). These sandstone layers typically have a high quantity of muddy matrix and a moderate apparent permeability.

The stratigraphy of the eastern portion of the Closed OB/OD Area is consistent with the description in the preceding paragraph. The stratigraphy is much less complex in the western portion of the Closed OB/OD Area where bedrock exposures are dominated by the Mancos Shale.


Sub-surface rocks below the Current OB/OD Area include the lower Petrified Forest Formation, the Moenkopi Formation, the San Andres Limestone, and the Glorieta Sandstone. The lower Petrified Forest Formation and the Moenkopi Formation consist of 250 to 300 feet of mudstones and sandstones with a relatively low apparent permeability. Below this is approximately 100 feet of the San Andres Limestone underlain by approximately 120 feet of the Glorieta Sandstone. A major reflecting surface, identified in the seismic data at a depth of approximately 700 feet below ground surface (bgs), was interpreted to be the top of the San Andres/Glorieta Aquifer.


Structural Geology


As the Hogback is approached from the east, the orientation of bedding changes sharply from a gentle northwest dip to a steep westerly dip of approximately 60 degrees along the north-trending Nutria Monocline. The fold axis, which is cut by steeply dipping, roughly north-south trending faults, bisects the Current OB/OD Area and the eastern portion of the Closed OB/OD Area along the eastern face of the Hogback. The Painted Desert Member of the Petrified Forest Formation is exposed along this fold axis throughout the Current OB/OD Area and the eastern portion of the Closed OB/OD Area. Bedding is probably discontinuous across the fold axis, as a result of faulting within the subsurface, however, these faults may not extend to the surface in many locations.

Rock fractures (joints) are present in most sandstone units throughout the geologic section. These steeply dipping joints are oriented primarily northwest-southeast and northeast-southwest. They are typically closed to tight, bedding-confined, and do not contain mineral deposits. This

suggests a lack of previous ground water transport along these joints. Joint surfaces with demonstrable offset of less than 15 centimeters indicate small amounts of left-lateral slip accommodating east-west bending in the monoclinal fold axis of the Hogback. This small-scale slip along the fractures has been interpreted as a consequence of the monoclinal fold axis being slightly oblique to the regional shortening direction.

Qa2	Qc	
TRpb		
BOUNDARY		These
TRps		
	Qa2	And
	7/	X500
		Y Hand
	7450	
	Qc	7400
¥04		Qa2 004
A		094 0092
		059 0007 0017
Je		Jz source states
		Kd
009/E 009/E 089/E	700	
1600	7600	Km
7450		Kg
		le la
		OWL ROCK FORMATION
LEGE	TISO	PETRIFIED FOREST FORMATION, PAINTED DESERT MEMBER PETRIFIED FOREST FORMATION,
	QUATERNARY ALLUVIAL DEPOSITS	SONSELA SANDSTONE MEMBER PETRIFIED FOREST FORMATION, BLUE MESA MEMBER
	CREVASSE CANYON FORMATION GALLUP SANDSTONE MANCOS SHALE	 ALLUVIAL MONITORING WELL MANCOS SHALE FORMATION MONITORING WELL DAKOTA SANDSTONE FORMATION MONITORING WELL/BORING
	DAKOTA SANDSTONE MORRISON FORMATION	 DATION CONTROL FORMATION MONITORING WELL PAINTED DESERT MEMBER MONITORING WELL
ATE	ZUNI SANDSTONE ENTRADA SANDSTONE	 SONSELA SANDSTONE MEMBER MONITORING WELL UNDIFFERENTIATED CHINLE FORMATION MONITORING WELL DRAWING NO.

Figure 1-4 Geologic Map OB/OD Areas

DATE

				REV. NO.
DRAWN D. Taylor/DST	DATE 10.20.99/12.14.99.99	CLIENT APPROVAL		
SCALE 1" = 400'	W.O. No. 00805.80.05/I3013C		SHEET ()F

2.0 GROUND WATER INVESTIGATIONS

Ground water investigations have been conducted in the Closed and Current OB/OD Areas during CYs 1996, 1997, 1998, and 1999. These efforts (Table 2-1) consisted of monitoring well installation and sampling, a seismic profile survey, ground water elevation measurements, a well survey, geologic mapping, surface water sampling, and sediment sampling. The objectives and results of each are described in the following sections.

2.1 1996 INVESTIGATION ACTIVITIES

A ground water investigation was performed in the OB/OD Areas in CY 1996 to assess the presence and quality of shallow ground water and characterize the shallow hydrogeologic regime. This investigation consisted of drilling and sampling of soil borings, completion of shallow and intermediate depth monitoring wells, performance of downhole video logging and slug tests on newly-installed monitoring wells, and collection of ground water, surface water, and sediment samples (Table 2-1).

Two conceptual models were initially proposed to describe potential ground water flow in the OB/OD Areas. In the first model, the arroyo bisecting the Current OB/OD Area was viewed as part of a losing stream system. All shallow ground water base flow would be derived from infiltration of surface water from periodic stream flow in the arroyo. The lateral extent of shallow ground water would be limited to areas immediately adjacent to the arroyo.

In the second model, the arroyo was viewed as part of a gaining stream system. The shallow ground water surface (i.e., the water table) generally would follow the land surface contours adjacent to the arroyo and, therefore, shallow ground water would flow downgradient toward the arroyo from the surrounding highlands. In this model, the lateral extent of the shallow ground water would not be limited to the immediate vicinity of the arroyo.

2.1.1 Soil Boring and Monitoring Well Installation and Sampling

The rationale for selection of soil boring and monitoring well locations is summarized in Table 2-2. This table also explains deviations from the FSP (ERM, 1996a) that were required based upon field conditions. Soil boring and monitoring well locations are shown in Figure 2-1 (Appendix A).

Survey data are presented Appendix I. Copies of soil boring logs and monitoring well construction diagrams are found in Appendices B and C, respectively. Table 2-3 presents monitoring well construction details and Table 2-4 presents well development data.

Shallow well locations were selected to provide data concerning changes in ground water quality from upstream to downstream areas along the arroyo and to determine the lateral extent of ground water perpendicular to the axis of the arroyo. Interconnection between shallow ground water and deeper aquifers did not appear to be likely based upon the regional geology and field observations. It was anticipated that bedrock beneath the OB/OD Areas would be shale, and intermediate depth monitoring wells were designed to confirm the presence of an aquitard.

One well, KMW10, was installed into a westward dipping aquifer to evaluate if contamination was migrating down dip from the eastern portion of the Closed OB/OD Area. The well location was selected because it was thought most likely to receive recharge from surface water or shallow ground water that had been in contact with waste.

Arroyo sediment borings were drilled within the Closed OB/OD Area arroyo using a hand auger and soil samples were collected from the depth intervals of 0.5 to 1.0 feet bgs, 2.5 to 3.0 feet bgs, and 4.5 to 5.0 feet bgs. The soil samples were analyzed for explosives, Target Analyte List (TAL) metals, and total phosphorous. Total phosphorus was added based upon the discovery of munitions containing phosphorus (white and red) during UXO survey activities in the Closed OB/OD Area.

Soil borings for the installation of monitoring wells were advanced using either a hand auger or hollow stem auger drilling methods. Soil samples were collected continuously for lithologic logging from the ground surface to the depth of auger refusal. Air rotary drilling methods were used to advance the boreholes to the depth of first water. For the boreholes completed using a drill rig, soil samples were collected using split spoon sampling methods. Samples for laboratory analysis were collected at fivefoot intervals and from the lower-most interval. All soil samples collected during borehole drilling were analyzed for explosives and TAL metals. In addition, soil samples from the Closed OB/OD Area were also analyzed for total phosphorous based upon the discovery of munitions containing phosphorus (white and red) during UXO survey activities.

Downhole video surveys were performed at CMW10, CMW14, CMW16, CMW19, KMW09 and KMW10 to aid in the identification of waterproducing zones. The videos were studied to determine the intervals to be screened in the completed wells. Slug tests were performed on selected newly-installed wells located in the Closed and Current OB/OD Areas. This aquifer test provides an estimate of the hydraulic conductivity of the screened interval of the well. Slug-in and slug-out measurements were collected and analyzed using the Bouwer-Rice methodology (Bouwer and Rice, 1976).

Ground water samples were collected from monitoring wells in the Closed and Current OB/OD Areas in October 1996 and February 1997. Ground water samples from the Current OB/OD Area were analyzed for explosives, TAL metals (total and dissolved) and Total Dissolved Solids (TDS). Samples from the Closed OB/OD Area were analyzed for the same suite of parameters plus total phosphorous based upon the discovery of munitions containing phosphorus (white and red) during UXO survey activities.

Ground water level measurements were also collected from all of the wells in the Closed and Current OB/OD Areas during one 12-hour period. This was done in October 1996 and February 1997. A contemporaneous set of water levels is collected to evaluate the direction of ground water flow. Collection of ground water levels during different seasons allows an evaluation of seasonal changes in ground water levels and flow direction.

2.1.2 Surface Water and Sediment Sampling

Ten co-located surface water and sediment samples (Figure 2-1, Appendix A) were collected from within a dry arroyo that bisects the Closed OB/OD Area during a storm event in September 1996. The sediment samples were analyzed for explosives, TAL metals, salinity, total phosphorus, total organic carbon (TOC), and pH (Table 2-1). The surface water samples were analyzed for explosives, TAL metals, TDS, total suspended solids (TSS), hardness, salinity, and total phosphorus, except for KSW01 and KSW10 which were not analyzed for TDS because of insufficient volume.

Five co-located surface water and sediment samples (Figure 2-1, Appendix A) were collected from within a dry arroyo that bisects the Current OB/OD Area during a storm event in September 1996. Samples were not collected at the remaining five locations during this sampling event because no surface water was present. The surface water samples were analyzed for explosives, TAL metals, TDS, TSS, hardness, and salinity. Sediment samples were collected in October 1996 from ten locations, five of which had been sampled in September (Table 2-1). No surface water was present during the October 1996 sampling event; thus, no co-located

surface water samples were collected at that time. The sediment samples were analyzed for explosives, TAL metals, salinity, TOC, and pH.

2.1.3 1996 Investigation Results

.2.1.3.1 Closed OB/OD Area Results

Three wells (KMW09 through KMW11) were installed in the Closed OB/OD Area with finished depths ranging from 63 to 108 feet bgs. At two of the three wells (KMW09 and KMW11) the materials encountered during drilling generally consisted of 25 feet of silt and sand, overlying up to 80 feet of sandy or silty clay. The sandy/silty clay materials were interpreted as being components of shale with variable competence. Air rotary drilling methods were used below the depth of auger refusal during the installation of these wells and it is likely that subsurface materials were broken and ground during the drilling action.

The location of KMW10 was selected based upon the presence and measured dip angle (approximately 55 degrees) of a sandstone/siltstone outcrop exposed in the Closed OB/OD Area arroyo. KMW10 was drilled in a location approximately 100 feet west of the observed outcrop. This distance was selected as sufficient to allow water to enter the sandstone and be detected as ground water. The anticipated borehole depth was calculated based upon the distance from the outcrop, thickness of the outcrop, and dip angle. It was anticipated that approximately 150 feet of drilling would be required to penetrate the entire thickness of the siltstone/sandstone of the targeted westward dipping aquifer.

In KMW10, the targeted westward dipping aquifer was encountered below 30 feet of silt and sand. Drilling continued through a siltstone/sandstone to a total depth of 173 feet bgs. KMW10 was installed in the first water-bearing zone of the westward dipping aquifer, at a depth of approximately 170 feet bgs. Considering that the anticipated drilling depth was based upon field measurements and geometric calculations, the lithologies encountered at KMW10 are considered consistent with those anticipated at this location.

Slug tests were conducted at KMW09 and KMW11. Hydraulic conductivities ranged from 1.7×10^{-5} centimeters per second (cm/sec) to 4.6×10^{-5} cm/sec (Table 2-5). These values are indicative of a mixture of silt and clay (Driscoll, 1986), and the lithology described in the boring logs supports this conclusion. Copies of the hydraulic conductivity graphs are provided in Appendix D.

Explosive constituents were detected at KMW09 only, at a ground water depth of approximately 100 feet bgs. No explosive constituents were detected in the westward dipping aquifer well (KMW10). Further discussion and evaluation of analytical results is presents in Section 3.0.

2.1.3.2 Current OB/OD Area Results

Eleven wells (CMW02, CMW04, CMW06, CMW07, CMW10, CMW14, and CMW16 through CMW20) were installed in the Current OB/OD Area with finished depths ranging from 3 to 137 feet bgs. The materials encountered during drilling generally consisted of 20 feet of silt and sand, overlying up to 150 feet of silty clay with thin layers of shale or sandstone. Similar to the Closed OB/OD Area, these materials were thought to be components of a shale unit that were broken and ground while employing air rotary drilling methods.

Slug tests were conducted at CMW02, CMW04, CMW07 and CMW17. Hydraulic conductivities ranged from 5.8 X 10⁻⁶ cm/sec to 6.6 X 10⁻⁵ cm/sec (Table 2-5). These values are indicative of a mixture of silt and clay (Driscoll, 1986), and the lithology described in the boring logs supports this conclusion. The value for CMW17 (5.8 X 10⁻⁶ cm/sec), is an order of magnitude lower than the other wells and may indicate an increased amount of clay. Copies of the hydraulic conductivity graphs are provided in Appendix D.

Water level data collected in October 1996 (and again in February 1997) indicated that the distribution of hydraulic heads within the Current OB/OD Area was complex and did not appear to fit either of the relatively simple conceptual models proposed. Table 2-6 presents ground water elevation data for this and subsequent rounds of sampling.

Explosives were detected in ground water samples from six of the wells (CMW06, CMW16, CMW17, CMW18, CMW19, and CMW20). The highest concentrations of explosives were detected in ground water at CMW18, collected at an approximate depth of 45 feet bgs. The most downgradient well (CMW16) was found to contain explosives at a ground water depth of approximately 30 feet bgs. Further discussion and evaluation of analytical results is presented in Section 3.0.

2.1.4 1996 Investigation Conclusions

Explosives were detected at wells installed in the Closed and Current OB/OD Areas but the areal extent was not defined. Explosives were not

detected in the westward dipping aquifer, indicating that contaminant migration down dip was not occurring at this location within the Closed OB/OD Area.

Based on these results, three supplemental conceptual models were developed for the OB/OD Areas and were discussed in the OB/OD Area Work Plan (ERM, 1997a). The supplemental models represented three alternative hydrogeologic scenarios. Because of the water quality results and the uncertainty associated with the hydrogeology, further subsurface characterization of the Current OB/OD Area was required to define the distribution of ground water and assess potential ground water transport pathways.

2.2 1997 INVESTIGATION ACTIVITIES

Subsurface characterization efforts in the Current OB/OD Area during CY 1997 consisted of a surface seismic survey, borehole installation and logging, geologic mapping, and fracture trace analysis. The objective of these activities was to obtain additional data concerning the stratigraphy and structural setting of the Current OB/OD Area. Table 2-1 summarizes these efforts. Table 2-2 summarizes the rationale for each boring and explains any deviations from the work plan.

2.2.1 Seismic Survey

The initial plan for the survey was to collect data along five transect lines oriented generally east-west across the valley and one transect line oriented generally north-south through the center of the valley (Figure 2-2). Modifications in the program were made in the field based upon site conditions and access. The northern-most seismic line oriented in the east-west direction (Line 5) was moved to a position south of its proposed location. The revised location was selected to provide data near the northern boundary of the property, which was proposed to remain under Army control following closure. The north-south trending seismic line (Line 6) was extended approximately 1,300 feet beyond the northern-most and southern-most east-west oriented seismic lines to improve the quality of the data at the tie point with the southern-most east-west line (Line 1).

2.2.1.1 Survey Design

The seismic method chosen for the geophysical survey was based on the objectives of the survey. Seismic reflection is well suited to imaging the

structure of several subsurface horizons. Prior to the survey it was not known if seismic reflection data of sufficient quality could be acquired in the OB/OD Areas. For this reason, an initial test phase was planned to evaluate both seismic reflection and seismic refraction. If the seismic reflection field test did not produce good quality data seismic refraction would be used to image the upper lithologic units. General information regarding the seismic reflection method is contained in the Seismic Reflection Survey Report (Blackhawk Geometrics, Inc. [Blackhawk], 1999). A copy of this report is included in Appendix E.

Both subsurface imaging and health and safety considerations guided the initial survey design. Based on previous drilling and knowledge of the surface geology, the subsurface targets included steeply dipping strata, at least one large reverse fault, and a variable thickness, low-velocity, unconsolidated surface layer. The health and safety concerns stem from the abundance of UXO throughout the OB/OD Areas. During munitions disposal activities in the area, ordnance items were sometimes distributed a considerable distance from the detonation site. Although a concentrated effort had previously been made to remove UXO from the OB/OD Areas, surface and subsurface UXO clearance was performed along each of the seismic lines in a 10-foot wide swath to provide safe corridors in which the seismic survey could be conducted.

To effectively image the near-surface lithology, a small receiver spacing was needed for either seismic method. Because the investigation targets also included deeper lithologic horizons, it was critical to plan for a sufficient offset between the source and farthest geophone. The initial specifications included a minimum of 96 recording channels, a 5-foot geophone station spacing, testing of single, clustered, and small linear geophone arrays, and a split-spread configuration. The station spacing was increased to 10 feet to achieve an offset capable of imaging the probable depth of the Glorieta formation (700 feet). A 120-channel, 24-bit Geometrics Strataview seismograph recording system was used for the survey. The geophones selected were single component 40-hertz (Hz) resonant frequency geophones, which are capable of recording frequencies in excess of 500 Hz.

The seismic source was chosen to minimize the possibility of sympathetic detonations of UXO. With this objective in mind, no explosives or ammunition-based sources were considered for the survey. Impulse sources such as a hammer or weight drop and vibratory sources were tested. The impulse source tested was a Bison Elastic Wave Generator (EWG) and the vibratory source was an iVi Minibuggy vibrator. The EWG is a pickup truck mounted weight drop source. The weight of

approximately 75 pounds, is picked up by a hydraulic system, and is accelerated downward by thick rubber bands which are stretched over the weight. The Minibuggy source uses a hydraulic system to generate vibrations that are translated to the ground surface by a base plate. The Minibuggy is capable of generating frequencies from 10 to 300 Hz.

As an added safety measure, a ground motion vibration test was performed for each of the sources in an area known to be cleared of UXO. Although no data were available regarding the critical ground acceleration required for sympathetic detonation of UXO in the area, a qualitative evaluation was made using a vibration monitor. The monitor selected for this survey was a Vibratech MultiSeis.

2.2.1.2 Field Testing

The field testing for the feasibility segment of the survey began on 11 August 1997. Line 4 of the survey was chosen for the field testing because it was on a road, which improved its accessibility and decreased the probability of encountering UXO.

2.2.1.2.1 Ground Motion Vibration Testing

Vibration monitor measurements were performed in an area thought to be most likely free of UXO. Peak particle velocity was compared for varying offsets from each of the energy sources. The vibration monitor was stepped out in 2-foot intervals and measurements made at each location to a maximum offset of 10 feet. The EWG had a greater peak particle velocity than the Minibuggy in the near offsets, but had greater decay of energy with increasing offset. The opinion of the UXO contractor, Safe Environment Inc. (SEI), was that the 10-foot buffer planned for each of the seismic line corridors would be sufficient to avoid sympathetic detonation of UXO, given the observed vibrations.

2.2.1.2.2 Reflection Survey Testing

Geophones were planted 10 feet apart on the east end of Line 4 for the initial spread location of the reflection survey. The source was placed between the first and second geophone for testing of the source signal parameters. The source strength of the EWG was not sufficient to image the deeper horizons or to reach the longer offsets and the overall data amplitude was not sufficient for use as a reflection seismic source. Several parameters were tested for the Minibuggy including the sweep and the spread geometry. The sweep for a vibratory source refers to one transmitted signal. Sweep parameters that can be varied for a vibratory

source include starting and ending vibratory frequency, sweep duration or length, sweep repetition at each source location, and duration of the signal at a given frequency. If the signal spends an equal amount of time at each frequency within the sweep, it is referred to as a linear sweep. A non-linear sweep can be programmed to emphasize either the lower or higher frequencies, depending on the survey objectives. Frequency ranges of 20 to 120, 30 to 180, 40 to 180, 40 to 240, and 80 to 240 Hz were tested using a linear sweep. The duration ranged from 4 to 8 seconds with up to four repetitions. The selected parameters were a frequency range of 30 to 180 Hz, with four, 6-second sweeps per source location.

The source location was then moved up through the spread to the midpoint to determine the source-receiver geometry. A split-spread configuration was planned as this geometry better images steeply dipping strata because both up-dip and down-dip travelling waves are recorded at the same source location. An asymmetric split-spread was chosen with the source located between channels 35 and 36. No frequency filters were used during data acquisition. These filters are often used in the presence of electrical utilities or other frequency-dependent noise sources. None of these types of noise sources were present in the OB/OD Areas.

2.2.1.2.3 Refraction Survey Testing

A refraction test spread was collected in the same location as the reflection test spread was acquired. The EWG was used as the source for this test, because an impulse source produces a more distinct refraction event than a vibratory source does and a refraction survey does not require as much energy penetration as reflection does. The refraction data was of useable quality, however, this method was not chosen for acquisition of the rest of the survey. Reflection data provides more information regarding the deeper horizons of interest and fault definition and was considered more appropriate with respect to the survey objectives.

2.2.1.2.4 Methodology Chosen for Seismic Acquisition

The parameters chosen for acquisition of the remainder of the seismic survey consisted of the Minibuggy source, 120 recording channels and a 10-foot geophone spacing. The vibratory signal generated by the Minibuggy had a frequency range of 30 to 180 Hz, with four, 6-second sweeps per source location. Each source point was located between the pair of geophones that recorded channels 35 and 36. The ends of each line were recorded by "rolling through" the spread. This means that at the beginning of the line the source is placed between channels one and two, the source is moved until it reaches channels 35 and 36, and then the position of the recorded geophones moves with the source, maintaining

its position between channels 35 and 36. Similarly, at the end of the line the source moves from channels 35 and 36 through the end of the geophone positions.

The location of each of the seismic survey lines was surveyed using Differential Global Positioning System (DGPS) technology. Horizontal coordinates and ground surface elevations were recorded at a maximum spacing of 50 linear feet along the ground surface. Ground surface elevations were collected at closer intervals in areas of steep topography and at changes in slope. DGPS data were collected to a horizontal and vertical accuracy of ± 1 foot.

Processing of the seismic data was performed to compensate for factors such as the geometry of the source relative to the receivers, the velocity of the subsurface materials, and other properties of the subsurface strata. The seismic survey and DGPS data were then combined to create seismic profiles of each survey line.

2.2.1.3 Surface Seismic Reflection Acquisition

The parameters selected during the field testing were used to collect the five east-west lines and one north-south line. A total of 27, 800 linear feet of surface seismic survey was performed. During all operations the UXO subcontractor cleared every source and geophone location, as well as all access routes. While in the OB/OD Areas, personnel were escorted at all times by the UXO subcontractor. Further details regarding the data acquisition and production schedule are contained in the Seismic Reflection Survey Report (Blackhawk, 1999) (Appendix E).

2.2.1.4 Seismic Data Processing

Veritas DGC GeoServices of Denver, Colorado processed the seismic reflection data from this survey. The procedures used to process the data are typical of procedures used to process oil and gas industry data. Although the exploration targets for oil and gas surveys are typically located at depths of several thousand feet, rather than the tens or hundreds of feet targeted by this survey, the signal processing objectives are the same for both surveys. The types of processing needed for reflection data include re-ordering of the seismic traces from the "shot gather" to the "common depth point (CDP) gather" format. A gather is a set of recorded traces, with the shot gather being those collected together from a single source point in the field and a CDP gather being those traces from a given subsurface reflection point. The records require

compensation for the source signature (deconvolution), the variable elevations along the lines (statics), travel time from the source to the receiver (velocity analysis), various types of both organized and random noise, and energy scattering (migration). Some types of noise present in seismic records are expected and organized and some types are random and disorganized. A variety of spatial and frequency filters can be used to suppress unwanted noise from the records and to emphasize the desired reflection events. A summary of the processing parameters used for the OB/OD Areas seismic reflection data is contained in the Seismic Reflection Survey Report (Blackhawk, 1999) (Appendix E). The final product of the processing sequence is a cross section type display showing the seismic traces as horizontal distance and travel time.

2.2.2 Borehole Installation and Logging

Two borings were installed on Line 2 (Figure 2-2) to identify the lithologic formations present in the upper 250 feet and to perform a downhole velocity survey (check-shot). The borings were given the designations Seismic Pilot Boring (SPB) 1 and 2. Air rotary drilling methods were used and lithologic logs of the boreholes were created based upon cuttings. SPB 1 was drilled to a depth of 251 feet bgs and a stratigraphic log was completed (Appendix B). However, problems maintaining the integrity of the borehole occurred during electrical logging, and cave-in resulted. The subsequent depth of SPB 1 was 120 feet bgs. SPB 2 was drilled and a stratigraphic log completed to 250 feet bgs (Appendix B). Subsequently, cave-in occurred and the depth was reduced to 190 feet bgs. Downhole electrical and geophysical logging were conducted across these reduced depths.

Electric logging of boreholes SPB 1 and SPB 2 was performed by Southwest Geophysical Services, Inc., of Farmington, New Mexico. Each of these boreholes was logged using caliper, induction-resistivity, conductivity, and gamma ray methods. Copies of the electric logs are presented in Appendix F.

A downhole geophysical survey called a check-shot was performed on SPB 1 and SPB 2. The check-shot was conducted by placing a threecomponent downhole geophone in the boring and placing a seismic source on the surface. The two sources tested for the survey were a sledgehammer and the Minibuggy vibrator. It is often preferable to use the same seismic source for downhole surveys as was used for the surface survey. However, in this case, the sledgehammer provided sufficient energy and a more distinct first arrival, which is the event used to

calculate the check-shot velocities. The results of the check-shot survey can be found in the Seismic Reflection Survey Report (Blackhawk, 1999) (Appendix E).

2.2.3 Results and Interpretation

2.2.3.1 Borehole Logging

The gamma ray log is a measurement of the natural radioactivity of the formations. In sedimentary formations the log normally reflects the shale content of the formations. This is because the radioactive elements tend to concentrate in clays and shales. Sandy formations usually have a very low level of radioactivity, unless radioactive materials such as volcanic ash or granite wash are present or the formation waters contain dissolved radioactive salts. (Schlumberger, 1989). In general, the formations present in the OB/OD Areas were not expected to have radioactive constituents present in the sandy units and an increased gamma ray reading was expected to represent clays or shales and a decreased response was expected to indicate the presence of sands.

Based upon the cuttings observed during drilling, SPB 1 encountered the Sonsela Sandstone Member at approximately 20 feet bgs and the top of the Blue Mesa Formation at approximately 60 feet bgs. SPB 2 appeared to encounter only the Painted Desert Formation.

Interpretation of seismic reflection data consists of correlation of reflection events across the seismic section display. The geological horizons of interest were identified during the drilling of borings SPB 1 and SPB 2, located along Line 2 (Figure 2-2). For stratigraphic intervals not represented by these boreholes, their depth was estimated based upon nearby thicknesses and regional dip of the strata. The velocity surveys collected at SPB 1 and SPB 2 were then used to estimate the seismic time that corresponded to the depth of the horizons of interest. Reflectors present at a given travel time were interpreted to represent a given geological interface.

2.2.3.2 Seismic Survey

The horizons mapped on the seismic sections were the top of the Sonsela Sandstone Member, the top of the Blue Mesa Member, the Middle Member of the Bluewater Creek Formation within the Chinle Formation, the top of the Moenkopi Formation, and the top of the Glorieta Sandstone

Formation. The Sonsela Sandstone Member was of interest because it is a relatively continuous, highly porous sandstone, which is used as a source of potable water in the vicinity of FWDA. The Glorieta Sandstone was chosen as a target for interpretation based on its use as a drinking water aquifer north of FWDA. Intermediate reflectors representing the other mapped horizons were chosen based on being either a high contrast interface, and thus an easily mapped reflector, or of lithological significance. Table 2-7 summarizes the range of interpreted depths for each of the formations along each of the seismic lines.

A number of faults were interpreted to be present on the seismic lines (Figures 2-3 through 2-5). Ideally, reflection events terminate sharply as the point of reflection reaches the fault plane and resume again in displaced positions on the other side of the fault. In addition, if the reflection has a sufficiently distinctive character, the two portions on opposite sides of the fault can be recognized and the fault throw determined (Telford et al., 1976). Fault orientations are often oblique to the cross sections, and hence the indicated sense of motion represents only one component of the true fault kinematics.

The cross sections along Lines 2 and 4 (and to a lesser extent, Lines 1 and 3) show the monoclinal axis of the Nutria Monocline being cut by apparent eastward-dipping reverse faults which are associated with the formation of the Hogback structure (Figures 2-3 and 2-4). A thrust zone composed of up to three faults is visible on most of the east-west seismic lines. To the west, in the up-thrown block of the monocline, several faults are present, with a normal component of slip, that appear to pre-date the reverse faults. The steeply westward dipping beds forming the Hogback are also visible in the western portion of Lines 2 and 4.

On the east side of the arroyo valley, a number of normal faults with a small amount of throw are present. In several areas, the upper sediments appear to have erosional features that may have been paleochannels that are either tributary or parallel to the present day arroyo. In the easternmost portion of these cross sections, gently dipping beds, representative of the northern portion of FWDA, are visible.

The cross section along Line 6 is oriented north-south and parallels the monoclinal axis. The faulting strike is oriented parallel or sub-parallel to the seismic line (Figure 2-5). This gives the appearance on the Line 6 cross section of the fault trace displacing only a portion of the lithologic section and the lithologic section is either missing, in the case of a normal fault, or repeated, in the case of a reverse fault, along the fault trace between the interpreted horizons.

ESPS.5-FWDA OB/OD-PHASE IB.1-00805.81-12/29/99

The Painted Desert Member is exposed at the ground surface in much of the Current OB/OD Area (Figure 1-4). The seismic cross sections indicate that this unit extends to a depth of approximately 50 feet within the Current OB/OD Area arroyo (Figure 2-3). The bottom of this unit increases with depth to approximately 300 feet bgs approaching the Hogback toward the west because of structural deformation. In the northeastern portion of the Current OB/OD Area ground water system, the bottom of the Painted Desert Member is approximately 250 feet bgs as a result of the regional northward bedrock dip (Figure 2-4). The presence of numerous faults has been interpreted in the seismic cross sections, but many of these faults probably do not extend to the ground surface and may not displace the entire thickness of the Painted Desert Member.

The Sonsela Sandstone Member is exposed at the ground surface in the southern portion of the Current OB/OD Area ground water system (Figure 1-4). Within the Current OB/OD Area, it has been interpreted to occur at a depth of approximately 50 feet bgs where it likely subcrops beneath the surface alluvium and Painted Desert Member, in the main areas of waste disposal within the arroyo (Figure 2-3). The Sonsela Sandstone Member was identified as the water-bearing zone in CMW-16 and then correlated in the downgradient direction to identify a probable migration pathway for ground water. In the northeastern portion of the Current OB/OD Area ground water system, the Sonsela Sandstone Member occurs at a depth of approximately 250 feet bgs (Figure 2-4). The seismic cross sections indicate that the thickness of the Sonsela Sandstone Member varies from approximately 80 to 140 feet (Figure 2-3). The presence of numerous faults has been interpreted in the seismic cross sections, many of which displace the entire thickness of the Sonsela Sandstone Member.

The Glorieta Sandstone Formation has been interpreted to occur at a depth of approximately 650 feet bgs within the Current OB/OD Area (Figures 2-3 through 2-5). The interval between the bottom of the Sonsela Sandstone Member and the top of the Glorieta Sandstone Formation consists of approximately 500 feet of bedrock composed predominantly of mudstone. Numerous faults in the seismic cross sections have been interpreted to extend into the Glorieta Sandstone Formation.

2.2.4 Geologic Mapping and Fracture Trace Analysis

Geologic mapping was performed by the USGS located in Flagstaff, Arizona. The objectives of the mapping were to identify geologic units exposed at the ground surface, their thickness, stratigraphic orientation, and evidence of structural deformation. A detailed analysis of the orientation and distribution of fracture joints and joint sets was also performed. Data were recorded regarding the location, orientation, size, opening, and nature of infilling of individual fractures. The results of mapping and fracture trace analysis were discussed in Section 1.4. Surficial materials and geologic structures identified in the OB/OD Areas are presented in Figure 1-4.

Information obtained during the geologic mapping and fracture trace analysis were incorporated with the results of the seismic survey and borehole logging. This assisted with identification of stratigraphic intervals and their correlation along seismic lines. It also identified surface and subsurface conditions, such as faults, that may affect ground water occurrence, movement, and recharge.

2.2.5 Selected Conceptual Hydrogeologic Model

Data collected during the CY 1997 subsurface characterization and previous field efforts were compiled and interpreted into a model that most likely describes the hydrogeologic setting of the OB/OD Areas. Seismic Line 2 (Figure 2-3) provides a detailed diagram of the hydrogeologic model of the OB/OD Areas. The formation of the geologic structures and resulting hydrogeologic setting of the OB/OD Areas is schematically represented in Figure 2-6. Reverse faulting uplifted overlying layers, creating an elevated surface feature. Faulting and fracturing along the axis of the geologic structure (trending generally north-south) caused a zone of weakness, which was preferentially eroded. This erosion resulted in the westward dipping beds in the west and the relatively flat beds to the east. Regional structural stresses caused deformation and faulting as seen in the interpreted seismic cross sections (Figures 2-3 through 2-5).

Two separate ground water systems have been identified in the OB/OD Areas and are discussed below (Figure 2-7). Ground water in these two systems is physically separated by sandstone and shale units of the Hogback that are topographically higher in elevation. West to east trending surface water flow through an arroyo connects these two ground water systems; however, surface water flow exists generally as high velocity, short duration events that are likely to result in minimal surface water infiltration into subsurface geologic intervals.

2.2.5.1 Closed OB/OD Area Ground Water System

The Closed OB/OD Area ground water system contains the portion of the Closed OB/OD Area located west of the Hogback (Old Demolition Area) (Figure 2-7). Monitoring well KMW09 is located within the Closed OB/OD Area ground water system. Based upon the hydrogeologic data collected, the other two monitoring wells drilled in the Closed OB/OD Area (KMW10 and KMW11) are physically separated from the area located west of the Hogback, therefore wells KMW10 and KMW11 are located within the Current OB/OD Area ground water system.

Within the Closed OB/OD ground water system, a thin veneer of unconsolidated materials is present overlying a thick shale unit (Mancos Shale) that is dipping steeply westward. These results are derived from the hydrogeologic data collected from one monitoring well drilled in this area in CY 1996 (KMW09). Hollow stem augers were used to drill to a refusal depth of 45 feet bgs at this location. This is likely where competent bedrock is first encountered in the subsurface. Below the depth of hollow stem auger refusal, air rotary drilling methods were used to advance the borehole to the depth of first water. The majority of the materials drilled using this method were logged as silty clay, which is consistent with a shale that has been pulverized by air rotary drilling.

As stated previously, ground water in the Closed OB/OD Area ground water system is physically separated from ground water located on the eastern side of the Hogback. Because there was only one monitoring well drilled in this area during CY 1996, ground water flow direction in the Closed OB/OD Area ground water system was unknown.

2.2.5.2 Current OB/OD Area Ground Water System

The Current OB/OD Area ground water system contains the Current OB/OD Area and portions of the Closed OB/OD Area located east of the Hogback (Old Burning Ground and Demolition Landfill Area) (Figure 2-7). Monitoring wells CMW02, CMW04, CMW06, CMW07, CMW10, CMW14, CMW16, CMW17, CMW18, CMW19, CMW20, FW38, KMW10, and KMW11 are located within the Current OB/OD Area ground water system.

Within the Current OB/OD Area ground water system, a thin veneer of unconsolidated materials is present overlying a thick sequence of shale units belonging to the Chinle Formation. These results are consistent with the hydrogeologic data collected from the monitoring wells drilled in CY 1996. Within the arroyo channel located in the Current OB/OD Area,

boreholes drilled using a hand auger encountered refusal between the depths of 3 and 21 feet bgs. These refusal depths are likely the point where a highly weathered and fractured shale is first encountered in the subsurface. Hollow stem augers were used to drill selected boreholes in CY 1996, and refusal was encountered between the depths of 11 and 60 feet bgs; however, one borehole extended to a depth of 85 feet bgs without encountering refusal. The hollow stem auger refusal depths are likely the locations where competent bedrock is first encountered in the subsurface. Below the depth of hollow stem auger refusal, air rotary drilling methods were used to advance the boreholes to the depth of first water. The majority of the materials drilled using this method were logged as silty clay, which is consistent with a shale that has been pulverized by air rotary drilling.

The complex distribution of hydraulic heads observed in the monitoring wells installed in CY 1996 is consistent with the selected conceptual hydrogeologic model. Water table conditions are present only within the thin unconsolidated materials present on top of the weathered shale bedrock. Ground water flow within the weathered and competent shale bedrock, located below the thin unconsolidated materials, is dominated by fracture flow.

The direction of ground water flow within the Current OB/OD Area is structurally controlled, generally in a northward direction. The geologic structure east of the Current OB/OD Area arroyo inhibits ground water flow in the eastern direction. This is caused by two factors: 1) bedrock located east of the Current OB/OD Area arroyo dips toward the north and northwest at approximately 10 degrees, thus ground water moving down dip would flow toward these directions; and 2) the surface exposures of stratigraphic units located east of the Current OB/OD Area are considerably higher in elevation than exposures of the same units located within and west of the Current OB/OD Area arroyo; thus, eastward flow in these units is not possible. Extensive shale units underlying the Current OB/OD Area ground water system, being of inherently lower primary permeability than surrounding sandstone units, inhibit vertical movement of ground water to underlying potable aquifer units. These shale units also restrict movement of potentially impacted shallow ground water from the Current OB/OD Area down dip toward the west. If limited transport of impacted ground water is possible to the west, it would occur at a significantly greater stratigraphic depth than the overlying Dakota and Gallup Sandstones, which are used as potable ground water sources in areas west of FWDA.

There are two possible ground water flow directions near the location of CMW16 and the intersection of Lines 4 and 6 (Figure 2-2). Strata in this vicinity may be dipping gently toward the north or toward the west at varying degrees, depending on the location relative to the Hogback. Ground water flow in this area is thought to be controlled by the dip of the geologic strata. Thus, depending on the location relative to the Hogback, ground water in this area may be flowing toward the north or the west.

The direction of ground water flow could also be affected by faults and fractures present in the subsurface. The interpreted faults and fractures visible on the cross sections could represent zones of preferential ground water movement either to deeper water bearing units or to westward dipping sandstone aquifers. However, visible fracture planes suggest a lack of previous ground water transport along these joints. Thus, it is more likely that the faults and fractures either do not affect ground water flow, or act as a barrier to flow in a western direction.

2.2.6 1997 Investigation Conclusions

2.2.6.1 Closed OB/OD Area Ground Water System

The results of the ground water characterization efforts conducted during CYs 1996 and 1997 identified the Closed OB/OD Area ground water system as physically separated from ground water located on the eastern side of the Hogback. Only one monitoring well was drilled in this area during CY 1996, and because explosives were detected in this well during one of two ground water sampling events, this well was not considered representative of background conditions within the Closed OB/OD Area ground water system.

Monitoring well locations were proposed to provide background ground water quality data, evaluate impacts to shallow ground water from identified waste disposal areas, determine the direction of shallow ground water flow within the Closed OB/OD Area ground water system, and evaluate the potential for migration of contaminated ground water toward the west, following the structural dip of the bedrock.

Project plans were developed and submitted for regulatory agency review in January and March 1998. Comments were provided by the reviewing agencies and responses were prepared by the Army. Final project plans (PMC, 1998a-d) were submitted for regulatory agency approval in May and June 1998.

2.2.6.2 Current OB/OD Area Ground Water System

The seismic survey identified the Sonsela Sandstone Member as the waterbearing zone in CMW16. This well had one of the highest concentrations of explosive compounds detected of the wells installed in CY 1996. The Sonsela Sandstone Member was correlated from the location of CMW16 toward the upgradient direction (south) to identify the potential source of the explosives detected in CMW16. Based upon this correlation, it is considered likely that the Sonsela Sandstone Member subcrops beneath the unconsolidated materials located in and near the arroyo of the Current OB/OD Area. Numerous waste/residue areas found to contain explosive constituents are located in this portion of the Current OB/OD Area. It can be concluded that shallow ground water in contact with the waste/residue areas is dissolving explosives and transporting these constituents into the Sonsela Sandstone Member. From the Current OB/OD Area, ground water within the Sonsela Sandstone Member migrates down dip, in a northern direction, toward CMW16. Because geologic structure causes ground water to flow toward the north, it was determined that additional characterization of ground water conditions within the Current OB/OD Area was not necessary.

The Sonsela Sandstone Member was also correlated downgradient from the location of CMW16, to identify the probable migration pathway for explosives impacted ground water. Ground water flow in this location is thought to be controlled by the dip of the geologic strata; thus, it may be flowing toward the north or the west. Monitoring well locations were proposed to identify the downgradient extent of explosives in ground water, and to determine whether thrust faults located to the west of CMW16 served as barriers to ground water migration or were leaky faults that served as preferential ground water migration pathways.

2.3 1998 INVESTIGATION ACTIVITIES

Hydrogeologic characterization efforts were performed in the OB/OD Areas in CY 1998 to attain the following objectives:

- confirm the revised conceptual hydrogeologic model of OB/OD Areas;
- conduct a ground water assessment to confirm potential ground water transport pathways; and
- install a compliance monitoring well network for ground water monitoring during the closure and post-closure periods, as necessary.

This investigation consisted of the completion of drilling and sampling of soil borings, installation of monitoring wells, electric logging and slug tests on newly-installed monitoring wells, alluvial and bedrock ground water sampling, an installation-wide ground water elevation survey, an off-site well identification survey to evaluate potential receptors, and focussed geologic mapping (Table 2-1).

2.3.1 Soil Boring and Monitoring Well Installation and Sampling

Soil boring and monitoring well locations were based on their relationship to monitoring wells containing constituents of concern, structural geology of the area and its influence on ground water flow, and geologic features such as faults that can act either as impermeable boundaries or conduits channeling ground water flow (Table 2-2). Deviations from the Work Plan (PMC, 1998a) that were required based upon field dynamics are also presented in Table 2-2. Soil boring and monitoring well locations are shown in Figure 2-1 (Appendix A). Copies of soil boring logs and monitoring well construction diagrams are found in Appendices B and C, respectively. Table 2-3 presents monitoring well construction details and Table 2-4 presents monitoring well development data.

Exploratory soil borings were used to identify specific geologic formations in the subsurface, depth encountered, thickness, moisture/water content, and water-transmitting properties. These borings were drilled to the point where ground water was encountered. Hollow stem auger drilling was used to advance the boreholes to the depth of refusal, then air rotary coring methods were used. Soil and bedrock cores were retrieved via continuous coring methods during drilling of each boring and detailed lithologic logs were prepared, as described in the FSP (PMC, 1998b). Two soil samples were collected from each boring and analyzed for explosives and TAL metals. Grab samples of ground water in the boreholes were collected and submitted for analysis of explosives and nitrate/nitrite using 24-hour turn-around-time (TAT) so that field decisions concerning final placement of each boring could be based upon the results of previously completed borings.

Conference calls were conducted periodically during the 1998 field effort to discuss data collected and to finalize the location of subsequent borings. Staff from the NMED Hazardous and Radioactive Materials Bureau (HRMB), NMED Ground Water Quality Bureau (GWQB), U.S. Environmental Protection Agency (USEPA) Region VI, USACE, and PMC participated in the calls. The following information was discussed during the calls:

- drilling completed to date;
- observed stratigraphy, interpreted correlations between boreholes, and their relationship to the hydrogeologic models derived during previous investigations; and
- results of 24-hour TAT analyses.

Concerns discussed and decisions agreed upon during each of the calls were summarized and documented in a conference call record that was forwarded to each of the participants.

Two zones of ground water were intercepted in selected borings. Those borings were drilled in such a manner that the shallow ground water zone was sealed off before drilling to the deeper zone to prevent crosscontamination. This was completed following the methods described in the Work Plan (PMC, 1998a). Grab samples of the first water encountered, and second water, if it was encountered, were both collected and analyzed as described above.

The total depth of several soil borings was based upon the depth required to drill through a targeted geologic interval. Borings located east of the Hogback, within the Current OB/OD Area ground water system, were drilled to a depth that extended through the entire thickness of the Sonsela Sandstone Member. Boring KMW14, located within the Closed OB/OD Area ground water system, extended through the entire thickness of the Dakota Sandstone Formation.

Down-hole electric logging was performed on newly-installed monitoring wells to characterize the strata encountered and identify ground waterbearing zones. Induction, gamma ray, and neutron logging techniques were implemented because they can be used through PVC well casing to characterize lithology and saturation of the surrounding strata. Openhole logging was not considered to be feasible in the borings in the OB/OD Areas due to the high risk of the hole collapsing. In addition, most open-hole logging methods require a liquid medium to be present in the boring. The OB/OD wells produce a very limited amount of water and adding fluids to environmental borings can compromise analytical results. Copies of the borehole electric logs are presented in Appendix F.

Slug tests were performed on selected newly-installed wells located in the Closed and Current OB/OD Areas. This aquifer test provides an estimate of the hydrogeologic properties of the screened interval of the well. Slugin and slug-out measurements were recorded and analyzed using the Bouwer-Rice methodology (Bouwer and Rice, 1976).

2.3.1.1 Bedrock Ground Water Sampling

Based upon hydrogeologic studies conducted in CY 1997, the boring logs collected while drilling monitoring wells in CY 1996 were re-evaluated. The majority of the monitoring wells drilled in the OB/OD Areas during CY 1996 were re-interpreted as being screened in bedrock. Monitoring wells installed in CY 1998 were all screened in bedrock formations (Table 2-2). In October 1998 and January 1999, ground water samples were collected from bedrock monitoring wells located in the Closed and Current OB/OD Areas (Table 2-1). Ground water samples were analyzed for explosives, TAL metals (total and dissolved), alkalinity (total and dissolved), ammonia (total and dissolved), TDS, nitrate/nitrite (non-specific), nitrite, chloride, and sulfate. Field parameters were measured at the time of sampling and included total iron, ferrous iron (Fe²⁺), dissolved oxygen, oxidation-reduction potential (Eh), conductivity, temperature, and pH. Ferric iron (Fe³⁺) was calculated from the field parameters using the following formula:

 $Fe^{3+} = (Total Iron) - (Fe^{2+}).$

In a few cases, there was insufficient water available from the well for all parameters and a reduced set of laboratory and/or field parameters was collected as noted in Table 2-1.

2.3.1.2 Alluvial Ground Water, Surface Water, and Sediment Sampling

Shallow ground water was detected in unconsolidated materials in three monitoring wells located in the Current OB/OD Area (Figure 2-7), CMW06, CMW20, and FW38 (a hand auger well installed in 1995). This shallow ground water is considered to have the potential to discharge to surface pools in the Current OB/OD Area arroyo. To evaluate this potential interaction, alluvial ground water monitoring wells were to be sampled the same day as co-located surface water and sediment samples (Figure 2-1, Appendix A). No surface water was present in the Current OB/OD Area while field activities were conducted during CY 1998 or January 1999, thus no surface water or sediment samples were collected. Ground water samples were only collected from CMW06 during the October 1998 and January 1999 sampling events because monitoring wells CMW20 and FW38 were dry (Table 2-1). The October 1998 sample from CMW06 was analyzed for explosives only because there was insufficient water in the well to collect all parameters. The January 1999 sample was analyzed for explosives, TAL metals (total and dissolved), TDS, and TSS. A reduced set of field parameters was collected during both sampling events (Table 2-1).

2.3.1.3 Installation-Wide Ground Water Elevation Survey

An installation-wide ground water elevation survey was conducted after completion of monitoring wells in the OB/OD Areas during CY 1998. As part of this effort, ground water level measurements were collected, in October 1998 and January 1999, from all of the wells in the Closed and Current OB/OD Areas during one 12-hour period. Contemporaneous sets of water levels were collected during different seasons to allow an evaluation of seasonal changes in ground water levels and flow direction.

2.3.2 Well Identification Survey

A well identification survey was conducted to clarify the nature of domestic wells adjacent to the northern and western boundaries of FWDA. The purpose of this survey was to identify the uppermost usable aquifer, locations of wells withdrawing water from this interval, and thus potential receptors downgradient of the FWDA boundary. The following organizations were contacted and provided information regarding wells and springs near FWDA:

- Bureau of Indian Affairs Navajo Area Facility, Gallup, NM;
- Navajo Area Indian Health Service, Division of Sanitation Facilities Construction, Gallup, NM;
- Navajo Nation Water Management Branch, Fort Defiance, AZ;
- Navajo Tribal Utility Authority, Fort Defiance, AZ;
- New Mexico State Engineers Office, Albuquerque, NM; and
- U.S. Geological Survey, Albuquerque, NM.

Seventy wells and seven springs were identified (Table G-1 and Figure G-1, Appendix G).

2.3.3 Focused Geologic Mapping

Additional mapping efforts were conducted by USGS in the base of the arroyos located in the Closed and Current OB/OD Areas during CY 1998. This effort attempted to identify surface exposures of bedrock or features that influence ground water flow, recharge areas, and interconnection between water-bearing zones. The results of this effort provided a limited amount of new information that has been incorporated into Section 2.2.4.

2.3.4 1998 Investigation Results

Detailed results of soil boring, ground water grab sample analyses using 24-hour TAT, and monitoring well installation completed in CY 1998 are presented in Table 2-8. This table also presents the subsurface stratigraphy encountered in each borehole, depths where ground water was encountered, and the interpreted geologic units for each of these intervals.

2.3.4.1 Closed OB/OD Area Ground Water System Results

Three borings drilled in CY 1998 (KMW12, KMW13, and KMW14) were located within the Closed OB/OD Area ground water system (Table 2-2 and Figure 2-7). Drilling of these borings started at the western-most location and progressed eastward based upon the results of previously completed borings. A cross section showing the geologic formations encountered in boreholes KMW10, KMW12, KMW13, and KMW14, and interpreted correlations among these locations are presented in Figure 2-8 (Appendix A).

First water was encountered in KMW12 at a depth of 58 feet bgs within a shale. This material is interpreted to be the Mancos Shale Formation that has been weathered to varying degrees. No explosive constituents were detected in the ground water grab sample collected from this borehole and the nitrate concentration did not appear elevated (Table 2-8). Based upon these results, KMW12 was completed as a background bedrock monitoring well screened in the first water-bearing zone, the Mancos Shale Formation.

Boring KMW13 was located between an area of waste identified in CY 1996 and the Hogback (Figure 2-1, Appendix A). This location was selected to evaluate the possibility of shallow ground water moving eastward through the waste and migrating into the Dakota Sandstone Formation. First water was encountered in KMW13 at a depth of 47 feet bgs within sandstone and siltstone intervals that are interpreted to be part of the Dakota Sandstone Formation. No explosive constituents were detected in the ground water grab sample collected from this borehole. Although no explosives were detected in the ground water grab sample collected from KMW13, boring KMW14 was drilled to further evaluate if shallow ground water or surface water are migrating into the Dakota Sandstone Formation. KWM13 was completed as a bedrock monitoring well screened in the first water-bearing zone, the Dakota Sandstone Formation. Based upon conference calls with NMED HRMB, NMED GWOB, and USEPA personnel, KMW14 was drilled in the location thought most likely to receive infiltration of ground water or surface water into the Dakota Sandstone Formation. KMW14 was drilled to a total depth of 350 feet. Sandstone was encountered from 24 feet to 95.5 feet bgs and was interpreted to be the Dakota Sandstone Formation. Between the depths of 95.5 feet and 338 feet bgs, a zone of alternating sandstone and shale was encountered. According to USGS personnel performing the mapping of the OB/OD Areas, this observed stratigraphy is consistent with the type section for the Dakota Sandstone and Mancos Shale Formations where these two units interfinger producing an alternating sequence of sandstone and shale intervals. At a depth of 338 feet bgs, a dark red sandstone was encountered which was interpreted as the top of the Morrison Formation. No free water was encountered in KMW14; therefore, no well was installed and the borehole was abandoned by grouting it to the ground surface. Based upon the absence of free water within the Dakota Sandstone Formation in the location thought most likely to receive infiltration of ground water or surface water, the possibility of ground water flow into a westward dipping sandstone unit causing contaminant migration toward the west is considered unlikely.

Down-Hole Electric Logging Results

In general, lithologic recoveries were poor through several sections of wells KMW12 and KMW13. The character correlation of the geophysical logs is good between the wells indicating that similar geologic materials were encountered in each location. A change in lithologic character occurs at a depth of approximately 22 feet bgs in KMW13. This closely corresponds with the depth of auger refusal in this well bore, indicating the transition from recent unconsolidated sediments into the Mancos Shale Formation. A similar character change occurs at 46 feet bgs in KMW12. Auger refusal occurred at approximately 35 feet bgs in KMW-12, indicating a thicker unconsolidated section prior to encountering the Mancos Shale Formation. The shorter section observed in KMW13 is likely the result of the unconformity between the unconsolidated sediments and the Mancos Shale Formation.

A distinctive character in both the gamma ray and the neutron logs is noted at 47 feet bgs in KMW12 and at 22 feet bgs in KMW13. The similar character in the deeper section of each of the well bores is likely related to the interfingering of sand and shale intervals of the Dakota Sandstone Formation and Mancos Shale Formation, respectively. Although the sections correlate well, based upon the steep dip of bedrock and the distance between the wells, it is highly unlikely that these wells

encountered the same sandstone interval within the interfingered Dakota/Mancos Formations.

Slug Test Results

Slug tests were conducted at KMW12 and KMW13. The hydraulic conductivity values for KMW12, screened within the Mancos Shale, were 8.7×10^{-5} cm/sec and 9.7×10^{-5} cm/sec (Table 2-5). These values are higher than would be expected for a shale and may be the result of weathering decreasing the competency of the bedrock and thus, increasing the water transmitting ability. KMW13, screened within the Dakota Sandstone Formation, had hydraulic conductivity values of 3.5×10^{-5} cm/sec and 4.3×10^{-5} cm/sec. These values are similar to those expected for a friable sandstone (Driscoll, 1986). Copies of the hydraulic conductivity graphs are provided in Appendix D.

2.3.4.2 Current OB/OD Area Ground Water System Results

Four borings drilled in CY 1998 (CMW21, CMW22, CMW23, and CMW25) were located north of previously-installed monitoring well CMW16 to identify the northern extent of impacted ground water within the first and second water-bearing zones (Table 2-2 and Figure 2-7). Drilling of these borings started at the southern-most location and progressed northward based upon the results of previously completed borings. A cross section showing the geologic formations encountered in wells CMW16, CMW21, CMW22, CMW23, and CMW25, and interpreted correlations among these wells is presented in Figure 2-8 (Appendix A).

First water was encountered in CMW21 at a depth of 28 feet bgs within a sandstone that is interpreted to be the Painted Desert Member. Explosive constituents were detected in the ground water grab sample collected from this borehole and the nitrate concentration was elevated. Second water was encountered at a depth of 58 feet bgs within a sandstone that is interpreted to be the Sonsela Sandstone Member. One explosive constituent was detected in the ground water grab sample collected from the second water-bearing interval of this borehole and the nitrate concentration did not appear elevated. Because explosives were detected in both the first and second water-bearing zones, boring CMW22, located farther north, was drilled and grab samples of the first and second water-bearing zones collected. CMW21 was completed as a monitoring well screened in the second water-bearing zone, the Sonsela Sandstone Member.

First water in CMW22 was encountered at a depth of 29.5 feet bgs within a sandstone that is interpreted to be the Painted Desert Member. Explosive constituents were detected in the ground water grab sample collected from this borehole and the nitrate concentration was elevated. Second water was encountered at a depth of 96.5 feet bgs within a sandstone that is interpreted to be the Sonsela Sandstone Member. One explosive constituent was detected in the ground water grab sample collected from the second water-bearing interval of this borehole, and the nitrate concentration appeared elevated. Because explosives were detected in both the first and second water-bearing zones, the proposed location of soil boring CMW23 was moved approximately 1,600 feet north of its original location to ensure that the extent of impacts to the first waterbearing zone was delineated in that direction (Figure 2-7). Grab samples of the first and second water-bearing zones in CMW23 were collected, and CMW22 was completed as a monitoring well screened in the second water-bearing zone, the Sonsela Sandstone Member.

First water in CMW23 was encountered at a depth of 46 feet bgs within a sandstone that is interpreted to be the Painted Desert Member. Explosive constituents were detected in the ground water grab sample collected from this borehole and the nitrate concentration appeared elevated. Second water was encountered at a depth of 100 feet bgs within a sandstone that is interpreted to be the Sonsela Sandstone Member. No explosive constituents were detected in the ground water grab sample collected from the second water-bearing interval of this borehole. Because explosives were detected in the first water-bearing zone, boring CMW25 was drilled approximately 1,600 feet northwest of CMW23 to ensure that the extent of impacts to the first water-bearing zone was delineated in that direction (Figure 2-7). Because no explosives were detected in the ground water grab sample collected from the second water-bearing zone of CMW23, this borehole was completed as a downgradient sentinel monitoring well screened in the second water-bearing zone, the Sonsela Sandstone Member.

First water in CMW25 was encountered at a depth of 74 feet bgs within mudstone and muddy sandstone intervals that are interpreted to be portions of the Painted Desert Member. No explosive constituents were detected in the ground water grab sample collected from this borehole and the nitrate concentration did not appear elevated. Based upon these results, CMW25 was completed as a downgradient sentinel monitoring well screened in the first water-bearing zone, the Painted Desert Member.

One boring drilled in CY 1998 (CMW24) was located north and west of previously-installed monitoring well CMW16 to determine if faults

ESPS.5-FWDA OB/OD-PHASE IB.1-00805.81-12/29/99

identified in the subsurface by the geophysical survey act as a ground water flow barrier or conduit, and to determine the direction of ground water flow in that area (Table 2-2 and Figure 2-7). Air rotary coring of CMW24 proved very problematic. Numerous intervals were encountered where the drill bit became stuck in the borehole and large intervals did not return any core. Air hammer drilling methods were utilized to advance selected intervals of the borehole as indicated on the lithologic log (Appendix B). This was completed in 10-foot increments between which the borehole was evaluated for moisture in an effort to minimize the chance of drilling past the first water-bearing zone. The stratigraphy encountered in CMW24 was not consistent with that observed in the other soil borings drilled in CY 1998, and it appeared to be highly structurally deformed with identified fractures, along some of which mineralization was observed. First water was encountered in CMW24 at a depth of 223 feet bgs within siltstone and sandstone intervals. Explosive constituents were detected in the ground water grab sample collected from this borehole and the nitrate concentration appeared elevated. Based upon the evidence of structural deformation encountered in CMW24 and the inability to correlate subsurface stratigraphy between CMW21 and CMW24, it was determined that drilling an additional boring in a location west of CMW24 would not provide additional useful information. Thus, the proposed boring located west of CMW24 was not drilled. CMW24 was completed as a monitoring well screened in the first water-bearing zone; however, the geologic formation could not be determined based upon the observed lithology.

Down-Hole Electric Logging Results

Interpretation of borehole electric logs is generally done by comparing the log character between boreholes. Interpretation of logs collected at CMW21 through CMW25 indicate few correlatable features. In general, the Painted Desert Formation shows few contrasts, which is expected for a silty-sandy mudstone, with few defined layers. A sharp contrast (or "kick") on the induction log can be noted on most of the borings thought to have encountered the Sonsela Sandstone Member. Based upon this induction "kick", the screened water-bearing interval in CMW24 may be the Sonsela Sandstone Member; however, the depth it was encountered (223 feet bgs) makes this correlation very uncertain. At CMW22 and CMW23, a distinct decrease in the gamma ray log indicates the presence of a sandy interval. This log response is consistent with the description of the Sonsela Sandstone Member as quartzose sandstone. Table 2-9 summarizes the depth bgs at which these features were observed on the logs.

The induction and gamma ray log responses described above represent the approximate depth bgs of the top of the Sonsela Sandstone Member. These interpreted depths are consistent with the results of the seismic survey. Lithologies and ground water occurrence observed for each of the boreholes is also consistent with the interpreted depths to the top of the Sonsela Sandstone Member, except for CMW25. An induction "kick" was observed at a depth of 85 feet bgs in CMW25. The lithologic log indicated that mudstone and muddy sandstone were encountered near this depth. The Sonsela Sandstone Member consists of a clean quartz sandstone; thus, the induction "kick" in CMW25 is interpreted as a more sandy interval within the Painted Desert Member.

Slug Test Results

Slug tests were conducted at CMW21, CMW23, and CMW24. Hydraulic conductivities for CMW21 and CMW23, screened within the Sonsela Sandstone Member, ranged from to 9.7 X 10^{-7} cm/sec to 3.5 X 10^{-5} cm/sec (Table 2-5). These values are similar to those expected for a sandstone that is well cemented to slightly friable, respectively (Driscoll, 1986). CMW24, screened within siltstone and sandstone intervals and located within the highly deformed strata of the Hogback, had hydraulic conductivity values of 2.3 X 10^{-5} cm/sec and 2.5 X 10^{-5} cm/sec. The higher hydraulic conductivity values increasing the bedrock's ability to transmit water. Copies of the hydraulic conductivity graphs are provided in Appendix D.

Ground Water Elevation Survey Results

Depth to ground water measurements were collected in association with each ground water sampling event. These data and calculated ground water elevations are provided on Table 2-6. Based upon the ground water elevation data, ground water flow within the first and second waterbearing intervals is generally toward the north. No figure has been provided because the wells are spread over a large area, limiting the ability to make precise interpretations.

2.3.5 Well Identification Survey

The off-site well closest to the OB/OD Areas, Well No. 19, is approximately 1,100 feet west of the western boundary of the OB/OD Areas, and little information regarding its construction was found (Table G-1 and Figure G-1, Appendix G). Well No. 19 was identified as a dug well, and therefore, is likely to be completed in shallow unconsolidated materials. The site of this well is approximately 100 feet topographically

РМС

higher than the site of the monitoring wells installed in the Closed OB/OD Area ground water system. Water within unconsolidated materials is generally under unconfined conditions and ground water flow can be assumed to follow ground surface topography. Under these conditions, shallow ground water from the location of Well No. 19 would flow toward the east, then southeast, toward the Closed OB/OD Area. This would prohibit the flow of potentially impacted ground water within the shallow unconsolidated materials in the Closed OB/OD Area ground water system from migrating to the location of Well No. 19. Based upon the borings drilled in CY 1998, the possibility of ground water flow into a westward dipping sandstone unit and causing contaminant migration toward the west is considered unlikely. Thus, no exposure of human or ecological receptors to contaminated ground water originating in the Closed OB/OD Area ground water system is likely to occur.

Other supply wells are located more than 10,000 feet north, east and south of the OB/OD Areas. As described previously, geologic structure causes ground water within the Current OB/OD Area ground water system to flow toward the north; thus, water wells located to the east and south would not be affected by ground water migration from the OB/OD Areas. Monitoring wells drilled in CY 1998 have defined the lateral extent of impacted ground water in the northern direction and no wells located north of the OB/OD Areas have been impacted. Thus, currently there is no exposure of human or ecological receptors to contaminated ground water originating in the Current OB/OD Area ground water system. Based upon the hydrogeologic data collected, exposure of human or ecological receptors to contaminated ground water in the future is not likely to occur.

2.3.6 1998 Investigation Conclusions

2.3.6.1 Closed OB/OD Area Ground Water System

The Closed OB/OD Area ground water system hydrogeologic model was also confirmed by the data collected in CY 1998. Soil borings identified a thin veneer of unconsolidated material within the valley located west of the Hogback. This graded into competent shale with increasing depth. Ground water flow within this material would generally follow topography. Because the Closed OB/OD Area ground water system is located within a valley that is topographically lower than the surrounding ridges of the Hogback, ground water flow would likely be toward the center of the valley. Thus, the unconsolidated materials in the Closed

OB/OD Area ground water system may act as closed basin with limited lateral movement of shallow ground water.

The first water-bearing interval within the central portion of the Closed OB/OD Area valley was encountered within the Mancos Shale. Monitoring well KMW12 was installed as a background monitoring well within the Closed OB/OD Area ground water system.

Two borings were drilled into the Dakota Sandstone Formation. Ground water was encountered in KMW13 and this monitoring well was screened in the westward dipping Dakota Sandstone Formation. Ground water in KMW13 occurred within a sandstone and siltstone interval. Boring KMW14, drilled in the location thought most likely to receive infiltration of surface water and shallow ground water, contained no free water throughout the entire thickness of the Dakota Sandstone Formation. The lack of ground water at the location of KMW14 indicates the likelihood that the sandstone and siltstone interval where water was encountered in KMW13 was not encountered in KMW14. Thus, it is considered unlikely that installation activities will result in impacts to the Dakota Sandstone Formation.

2.3.6.2 Current OB/OD Area Ground Water System

Data collected during CY 1998 confirmed the conceptual hydrogeologic model of the Current OB/OD Area ground water system. Detailed lithologic logs derived from cores identified two water-bearing intervals, the first of which occurs in sandstone intervals within the Painted Desert Member. This water-bearing interval was identified in and correlated among borings CMW21, CMW22, CMW23, and CMW25. Ground water flow appears to be northward within this interval, following the regional dip and topography. The lateral extent of ground water contamination initially was identified in this interval using grab samples collected from boreholes. Monitoring well CMW25 is screened in this interval and provides a downgradient sentinel monitoring point.

The second water-bearing interval occurs within the Sonsela Sandstone Member. This water-bearing interval has been correlated among CMW16, CMW21, CMW22, and CMW23. Ground water flow within this interval also appears to be northward, following the regional dip and topography. The lateral extent of ground water contamination initially was identified in this interval using grab samples collected from boreholes. Monitoring wells CMW21, CMW22, and CMW23 are screened in the Sonsela Sandstone Member and provide downgradient monitoring points. CMW23 is located downgradient of the zone of ground water

contamination and provides a sentinel monitoring well within the Sonsela Sandstone Member.

The lithology encountered in boring CMW24 was highly deformed with identified fractures, along some of which mineralization was observed. The first water-bearing interval encountered in this location was within a siltstone at a depth of 223 feet. Correlation of lithologic units between CMW21, located to the east, and CMW24 is not possible because of the intense structural deformation of the subsurface. Thus, it is also not possible to identify the ground water flow path in a westward direction.

2.4 CONCLUSIONS OF HYDROGEOLOGIC INVESTIGATIONS

2.4.1 Closed OB/OD Area Ground Water System

Within the Closed OB/OD Area ground water system a thin veneer of unconsolidated material was identified that grades into competent shale of the Mancos Shale Formation. No ground water was detected in the unconsolidated materials, but ground water flow within this material would generally follow topography and be toward the center of the valley. Thus, the unconsolidated materials in the Closed OB/OD Area ground water system may act as a closed basin with limited lateral movement of shallow ground water.

Shallow ground water was encountered in the Mancos Shale Formation and the Dakota Sandstone Formation. An additional boring drilled into the Dakota Sandstone Formation in the location thought most likely to receive infiltration of surface water and shallow ground water contained no free water throughout the entire thickness of the Dakota Sandstone Formation. No evidence of contamination was identified in any of these locations. Thus, it is considered unlikely that installation activities have impacted the Dakota Sandstone Formation. Future impact to this formation is also considered unlikely.

2.4.2 Current OB/OD Area Ground Water System

Within the Current OB/OD Area ground water system, a thin veneer of unconsolidated materials is present overlying a thick sequence of shale units belonging to the Chinle Formation. Water table conditions are present only within the thin unconsolidated materials present on top of the weathered shale bedrock. This shallow ground water may discharge to surface water pools within the Current OB/OD Area arroyo; however, no evidence of surface water flow has been observed since October 1996. Based upon these data, the potential of exposure to shallow ground water via its discharge to surface water is thought to be sporadic, if it occurs at all; therefore, this is not considered to be a complete exposure pathway.

Ground water flow within the weathered and competent shale bedrock, located in the Current OB/OD Area, is dominated by fracture flow. It is considered likely that the Sonsela Sandstone Member subcrops beneath the unconsolidated materials and fractured shale located in and near the arroyo of the Current OB/OD Area. Shallow ground water in contact with the waste/residue areas appears to be dissolving explosives and transporting these constituents into the Sonsela Sandstone Member. From the Current OB/OD Area, ground water within the Sonsela Sandstone Member migrates down dip, in a northern direction. A monitoring well network has been installed along this flow path that characterizes the ground water system and provides a basis for a compliance monitoring well network.

Intense structural deformation associated with formation of the Hogback makes correlation of lithologic units from the eastern and central portions of the Current OB/OD Area ground water system toward the western portion not possible. This lack of correlation precludes identification of the ground water flow paths in a westward direction.

Extensive shale units underlying the Current OB/OD Area ground water system, being of inherently lower primary permeability than surrounding sandstone units, inhibit vertical movement of ground water to underlying potable aquifer units, such as the Glorieta Sandstone. The shale units also restrict movement of potentially impacted ground water from the Current OB/OD Area down dip toward the west. If limited transport of impacted ground water toward the west were to occur, it would be at a significantly greater stratigraphic depth than the overlying Dakota and Gallup Sandstones, which are used as potable ground water sources in areas west of FWDA. Thus, it is considered highly unlikely that exposure to this ground water would occur; therefore, this is not considered to be a complete exposure pathway.

Area of Concern	Activity	Analytes
1996 Investigation Activities		
Current OB/ OD Area		
 Installation of Soil Borings/Monitoring Wells 	Drilled nine shallow soil borings and collected soil samples from each boring; completed two borings as ground water monitoring wells (CMW06 and CMW16) to assess the thickness and areal extent of the alluvium in and near the arroyo; to determine if there is baseflow of subsurface water within the alluvial soils within the arroyo; to assess potential impacts to water quality from residue/debris piles located adjacent to or within the arroyo. Continuous split-spoon sampling was performed.	Soil: Explosives and TAL Metals
	Seven of the nine shallow soil borings (CMW03, CMW05, CMW08, CMW09, CMW11, CMW12, and CMW15) were abandoned since water was not encountered prior to refusal. CMW01 was not drilled since first-water in CMW02 was in bedrock. CMW13 was not drilled since first-water in CMW14 was encountered in bedrock.	
	Drilled five intermediate soil borings and collected soil samples from each boring; completed the five borings as ground water monitoring wells (CMW02, CMW04, CMW07, CMW10, and CMW14) to evaluate the nature of the bedrock. Continuous split-spoon sampling was performed to refusal.	Soil: Explosives and TAL Metals

	Area of Concern	Activity	Analytes
•	Installation of Additional Soil Borings/ Monitoring Wells	gs/ Drilled one shallow soil boring adjacent to the dug well and collected soil samples from boring; completed boring as a ground water monitoring well (CMW20).	Soil: Explosives and TAL Metals
		Drilled three intermediate soil borings and collected soil samples from each boring; completed each as a ground water monitoring well (CMW17, CMW18, and CMW19). CMW17 was drilled adjacent to boring CMW12, CMW18 was drilled adjacent to boring CMW11, and CMW19 was drilled adjacent to boring CMW15 to intercept the first- water bearing zone.	
•	Downhole Logging	Conducted video surveys at CMW10, CMW14, CMW16, and CMW19 to identify water producing zones.	N/A
•	Collection of Ground Water Samples	Collected ground water sample from existing well (FW38) and newly- installed monitoring wells (CMW02, CMW04, CMW06, CMW07, CMW10, CMW14, CMW16, CWM17, CMW18, CMW19, and CMW20).	Field Analysis: Oxidation-Reduction Potential (Eh), Conductivity, Temperature, Turbidity, and pH
		Reduced set of parameters from CMW10 because of limited available water.	Laboratory Analysis: Explosives, TAL Metals (total and dissolved), and Total Dissolved Solids (TDS)
•	Collection of Surface Water and Sediment Samples	In September, collected five co-located surface water (CSW01, CSW03, CSW07, CSW08, and CSW10) and sediment (CSED01, CSED03, CSED07, CSED08, and CSED10) samples from within the arroyo.	Surface Water: Explosives, TAL Metals, TDS, Total Suspended Solids (TSS), Hardness, and Salinity
		In October, collected ten sediment samples (CSED01 through CSED10) from within the arroyo. No surface water samples were collected during this event because of the absence of water.	Sediment: Explosives, TAL Metals, Salinity, TOC, and pH

مو ر.

.

Area of Concern	Activity	Analytes
• Water Level Measurements	Conducted two rounds of water level measurements. The first round of water level measurements was collected approximately 14 days after well development. The second round of water level measurements was collected approximately 90 days later, to provide data concerning seasonal changes in water levels.	N/A
Slug Tests	Performed slug testing at CMW02, CMW04, CMW07, and CMW17.	N/A
Closed OB/ OD Area		
 Installation of Arroyo Sediment Borings 	Drilled eight soil borings and collected soil samples from each boring (KB001, KB002, KB003, KB004, KB005, KB006, KB007, and KB008) to determine if ground water is present in the sediments of the arroyo between rainfall events and to determine the depth to bedrock.	Soil: Explosives, TAL Metals, and Total Phosphorous
 Installation of Soil Borings/Monitoring Wells 	Drilled one shallow soil boring and collected soil samples from the boring; completed the boring as a ground water monitoring well (KMW09) to provide data concerning potential changes in water quality in a downgradient direction, from southwest to northeast along the arroyo, which may be related to potential impacts from observed residue/debris piles.	Soil: Explosives, TAL Metals, and Total Phosphorous
	Drilled one intermediate soil boring and collected soil samples from the boring; completed the boring as a ground water monitoring well (KMW11) to provide a sentinel monitoring point.	
	Drilled one soil/rock boring and collected soil samples from the boring; completed the boring as a ground water monitoring well (KMW10) to intercept any water-bearing zones within the westward dipping sandstone unit.	

Area of Concern	Activity	Analytes
Downhole Logging	Conducted video surveys at KMW09 and KMW10 to identify water producing zones.	N/A
Collection of Ground Water Samples	Collected ground water samples from newly installed monitoring wells (KMW09, KMW10, and KMW11).	Field Analysis: Eh, Conductivity, Temperature, Turbidity, and pH
		Laboratory Analysis: Explosives, TAL Metals (total and dissolved), TDS, and Total Phosphorous
	Collected ten co-located surface water (KSW01 through KSW10) and sediment (KSED01 through KSED10) samples from the arroyo.	Surface Water: Explosives, TAL Metals, TDS, TSS, Hardness, Salinity, and Total Phosphorous
	Collected a reduced set of parameters from KSW01 and KSW10 because of limited available water.	Sediment: Explosives, TAL Metals, Salinity, Total Phosphorus, TOC, and pH
	Conducted two rounds of water level measurements. The first round of water level measurements was collected approximately 14 days after well development. The second round of water level measurements was collected approximately 90 days later, to provide data concerning seasonal changes in water levels.	N/A
	Performed slug testing of newly installed monitoring wells (KMW09 and KMW11).	N/A

,

Area of Concern	Activity	Analytes
1997 Investigation Activities		
Current OB/ OD Area		
Surface Seismic Profiling Feasibility Study	Performed seismic profiling on one east-west study line to determine if seismic study objectives could be obtained and to select methods for the survey.	N/A
Seismic Profiling	Performed seismic profiling on multiple east-west lines and one north- south line; surveyed seismic profile lines using Global Positioning System (GPS) technology; and installed deep pilot borings and performed electric and seismic logging.	N/A
Geologic Mapping	Provided oversight of field geologic mapping effort conducted by the U.S. Geological Survey (USGS).	N/A
Closed OB/ OD Area		
Seismic Profiling	Performed seismic profiling on multiple east-west lines and one north- south line; surveyed seismic profile lines using GPS technology; and installed deep pilot borings and performed electric and seismic logging.	N/A
Geologic Mapping	Provided oversight of field geologic mapping effort conducted by the USGS.	N/A

24 - A.A.

Area of Concern	Activity	Analytes			
1998 Investigation Activities					
Well Identification Survey	Performed well identification survey in area surrounding FWDA.	N/A			
 Installation-Wide Ground Water Elevation Survey 	Conducted ground water elevation survey in all monitoring wells on FWDA.	N/A			
Current OB/ OD Area					
Focused Geologic Mapping	Provided oversight of field geologic mapping effort conducted by the USGS focused in Current OB/OD Area arroyo.	N/A			
 Installation of Soil Borings/Monitoring Wells 	Installed five borings and collected soil and ground water grab samples from each boring, completed the five borings as ground water monitoring wells (CMW21, CMW22, CMW23, CMW24, and CMW25). Analyzed ground water grab samples using 24-hour TAT to confirm and further define extent of contamination in first and second water- bearing zones. Two soil samples were collected from each boring at intervals of 8 to 10 feet BGS and immediately above the first-water bearing zone.	Ground Water: Explosives and Nitrate/Nitrite (24-hour TAT) Soil: Explosives and TAL Metals			
 Surface Water, Sediment, and Alluvial Ground Water Sampling 	Did not collect surface water or sediment samples because no standing water was present.	Field Analysis: Dissolved Oxygen, Eh, Conductivity, Temperature, Turbidity and pH			
	Collected a reduced set of field and laboratory parameters from CMW06 because of limited available water.	Laboratory Analysis: Explosives			
	CMW20 and FW38 were dry.				

,

Area of Concern	Activity	Analytes
Bedrock Ground Water Sampling	Collected ground water samples from existing wells (CMW02, CMW04, CMW07, CMW10, CMW14, CMW16, CMW17, CMW18, and CMW19) and from newly-installed monitoring wells (CMW21, CMW22, CMW23, CMW24, and CMW25). Performed field analyses and laboratory analyses on ground water samples.	Field Analysis: Total Iron, Ferrous Iron (Fe ²⁺), Dissolved Oxygen, Eh, Conductivity, Temperature, Turbidity, and pH
	Collected a reduced set of laboratory parameters from CMW10 and CMW22 because of limited available water. Collected a reduced set of field parameters from CMW14 and CMW18.	Laboratory Analysis: Explosives, TAL Metals (total and dissolved), Alkalinity (total and dissolved), Ammonia (total and dissolved), TDS, Nitrate/Nitrite (non-specific), Chloride, Sulfate, and Nitrite
Electric Logging	Performed electric logging of newly-installed monitoring wells (CMW21, CMW22, CMW23, CMW24, and CMW25).	N/A
Slug Testing	Performed slug testing of newly-installed monitoring wells (CMW21, CMW23, and CMW24).	N/A
Closed OB/ OD Area		
Focused Geologic Mapping	Provided oversight of field geologic mapping effort conducted by the USGS focused in Closed OB/OD Area arroyo.	N/A
 Installation of Soil Borings/Monitoring Wells 	Installed three borings and collected soil samples from each boring; completed two borings as ground water monitoring wells (KMW12 and KMW13). Ground water samples from two borings (KMW12 and	Ground Water: Explosives and Nitrate/Nitrite (24-hour TAT)
	KMW13) were analyzed using 24-hour TAT to define extent of contamination.	Soil: Explosives and TAL Metals
	KMW14 borehole was abandoned and grouted to surface because no free water was encountered.	

	Area of Concern	Activity	Analytes		
•	Surface Water and Sediment Sampling	Did not collect surface water or sediment samples because no standing water was present.	N/A		
•	Bedrock Ground Water Sampling	Collected ground water samples from existing wells (KMW09, KMW10, and KMW11) and newly-installed bedrock monitoring wells (KMW12 and KMW13).	Field Analysis: Total Iron, Fe²+, Dissolved Oxygen, Eh, Conductivity, Temperature, Turbidity, and pH		
			Laboratory Analysis: Explosives, TAL Metals (total and dissolved), Alkalinity (total and dissolved), Ammonia (total and dissolved), Nitrate/Nitrite (non- specific), TDS, Chloride, Sulfate, and Nitrite		
•	Electric Logging	Performed electric logging of newly-installed monitoring wells (KMW12 and KMW13).	N/A		
•	Slug Testing	Performed slug testing of newly-installed monitoring wells (KMW12 and KMW13).	N/A		

1

) Table 2-1 Field Investigations OB/ OD Areas Fort Wingate Depot Activity Gallup, New Mexico Area of Concern Activity Analytes 1999 Investigation Activities Current OB/ OD Area • Surface Water, Sediment, and Alluvial Did not collect surface water or sediment samples because no standing Field Analysis: Total Iron, I

Current OB/ OD Area		
 Surface Water, Sediment, and Alluvial Ground Water Sampling 	Did not collect surface water or sediment samples because no standing water was present.	Field Analysis: Total Iron, Dissolved Oxygen, Eh, Conductivity, Temperature, Turbidity, and pH
	Collected a reduced set of field and laboratory parameters from CMW06	
	because of limited available water.	Laboratory Analysis: Explosives, TAL Metals (total and dissolved), TDS, and
	CMW20 and FW38 were dry.	TSS
Bedrock Ground Water Sampling	Collected ground water samples from monitoring wells (CMW02, CMW04, CMW07, CMW10, CMW14, CMW16, CMW17, CMW18, CMW19, CMW21, CMW23, CMW24, and CMW25). Performed field analyses and laboratory analyses on ground water samples.	Field Analysis: Total Iron, Fe²+, Dissolved Oxygen, Eh, Conductivity, Temperature, Turbidity, and pH
	, , , , , ,	Laboratory Analysis: Explosives, TAL
	Collected a reduced set of laboratory parameters from CMW22 because of limited available water.	Metals (total and dissolved), Alkalinity (total and dissolved), Ammonia (total and dissolved), TDS, Nitrate/Nitrite (non-specific), Chloride, Sulfate, and

Nitrite

Area of Concern	Activity	Analytes			
Closed OB/ OD Area					
Bedrock Ground Water Sampling	Collected ground water samples from monitoring wells (KMW09, KMW10, KMW11, KMW12, and KMW13).	Field Analysis: Total Iron, Fe²+, Dissolved Oxygen, Eh, Conductivity, Temperature, Turbidity, and pH			
		Laboratory Analysis: Explosives, TAI Metals (total and dissolved), Alkalini (total and dissolved), Ammonia (total and dissolved), Nitrate/Nitrite (non- specific), TDS, Chloride, Sulfate, and Nitrite			
Surface Water and Sediment Sampling	Did not collect surface water or sediment samples because no standing water was present.	N/A			

.

	Boring/Monitoring Well Identification	Depth to Sonsela (feet)	Total Depth of Boring (feet)	Boring/Monitoring Well Location Rationale
1996 Ia	nvestigation			
Curren	t OB/OD Area			
	CMW01	NA	NA	Not drilled since first water in CMW02 was encountered in bedrock.
	CMW02	NA	43	Confirmed presence of bedrock, completed as an upgradient bedrock monitoring well.
	CMW03	NA	2.7	Since first water was not encountered prior to refusal, boring was abandoned.
	CMW04	NA	136.6	Confirmed presence of bedrock; completed as a bedrock monitoring well.
	CMW05	NA	5	Since first water was not encountered prior to refusal, boring was abandoned.
	CMW06	NA	18.6	First water was encountered prior to refusal; completed as an alluvial monitoring well.
	CMW07	NA	66.55	Confirmed presence of bedrock; completed as a bedrock monitoring well.
	CMW08	NA	6	Since first water was not encountered prior to refusal, boring was abandoned.
	CMW09	NA	5.5	Since first water was not encountered prior to refusal, boring was abandoned.
	CMW10	NA	73.07	Confirmed presence of bedrock; completed as a bedrock monitoring well.
	CMW11	NA	12	Since first water was not encountered prior to refusal, boring was abandoned.
	CMW12	NA	3.1	Since first water was not encountered prior to refusal, boring was abandoned.
	CMW13	NA	NA	Not drilled since first water in CMW14 was encountered in bedrock.
	CMW14	NA	94.55	Confirmed presence of bedrock; completed as a bedrock monitoring well.
	CMW15	NA	3	Since first water was not encountered prior to refusal, boring was abandoned.

.

Area	Boring/Monitoring Well Identification	Depth to Sonsela (feet)	Total Depth of Boring (feet)	Boring/Monitoring Well Location Rationale
·	CMW16	29	31.8	Confirmed presence of bedrock; completed as a bedrock monitoring well.
	CMW17	NA	53	Drilled adjacent to CMW12 to intercept the first water-bearing zone. Confirmed presence of bedrock; completed as a bedrock monitoring well.
	CMW18	NA	53	Drilled adjacent to CMW11 to intercept the first water-bearing zone. Confirmed presence of bedrock; completed as a bedrock monitoring well.
	CMW19	NA	52.8	Drilled adjacent to CMW15 to intercept the first water-bearing zone. Confirmed presence of bedrock; completed as a bedrock monitoring well.
	CMW20	NA	5.8	Drilled adjacent to dug well to intercept the first water-bearing zone. Completed as an alluvial monitoring well.
Closed	OB/OD Area			
	KB001-KB008	NA	NA	Drilled eight soil borings which confirmed that ground water is not present within the alluvium.
	KMW09	NA	108	Confirmed presence of bedrock; completed as a background bedrock monitoring well.
	KMW10	NA	173	Confirmed presence of a water-bearing zone within sandstone unit. Completed as a bedrock monitoring well within a westward dipping sandstone.
	KMW11	NA	63	Confirmed presence of bedrock; completed as a bedrock monitoring well.
1997 Iı	vestigation			
Curren	t OB/OD Area			
	SPB 1	20	251	Confirmed presence of Sonsela Sandstone Member. Downhole electric logging and geophysical survey completed.
	SPB 2	NE		Presence of Sonsela Sandstone Member not confirmed. Downhole electric logging and geophysical survey completed.

•

Area	Boring/Monitoring Well Identification	Depth to Sonsela (feet)	Total Depth of Boring (feet)	Boring/Monitoring Well Location Rationale
998 1	Investigation			
urre	nt OB/OD Area			
	CMW21	50	74.5	Confirmed presence of Sonsela Sandstone Member. Unit screened in CMW16 is Sonsela Sandstone Member. Ground water flow direction is toward the north. Ground water contamination was detected in Painted Desert Member and Sonsela Sandstone Member. Completed as a bedrock monitoring well within the Sonsela Sandstone Member. Installed boring CMW22 located farther north.
	CMW22	96.5	120	Confirmed presence of Sonsela Sandstone Member. Ground water contamination was detected in Painted Desert Member and Sonsela Sandstone Member. Completed as a bedrock monitoring well within the Sonsela Sandstone Member. Installed boring CMW23 located farther north.
	CMW23	94		Confirmed presence of Sonsela Sandstone Member. Ground water contamination was detected in Painted Desert Member. Completed as a bedrock monitoring well within the Sonsela Sandstone Member. Installed boring CMW25 located farther north.
	CMW24	239		Presence of Sonsela Sandstone Member not confirmed by drilling. Determined the presence of faults located between CMW16 and this location. Direction of ground water flow is unknown based upon structural deformation of subsurface. Ground water contamination was detected; completed as a bedrock monitoring well.
	CMW25	NE		Presence of Sonsela Sandstone Member not confirmed by drilling. Ground water flow direction is toward the north. Ground water contamination was not detected in Painted Desert Member. Completed as a bedrock monitoring well within the Painted Desert Member.

,

Area	Boring/Monitoring Well Identification	Depth to Sonsela (feet)	Total Depth of Boring (feet)	Boring/Monitoring Well Location Rationale
<u>Close</u>	d OB/OD Area			
	KMW-12	NA	60	Installed as a bedrock background monitoring well within the Mancos Shale Formation. Ground water flow direction cannot be determined.
	KMW-13	NA	60	Ground water contamination was not detected. Ground water has not been impacted by waste disposal in area between KMW09 and this location. Completed as a bedrock downgradient monitoring well within the Dakota Sandstone Formation. Drilled boring KMW14 north of this location.
	KMW-14	NA	350	Drilled through entire thickness of Dakota Sandstone Formation; no free water encountered. Borehole was abandoned.

NA - The depth to Sonsela Sandstone is not relevant to the drilling of this boring. NE - The Sonsela Sandstone was not encountered during the drilling of this boring.

,

Table 2-3 Well Completion Specifications 1996 and 1998 Field Efforts OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

Well Id	Date Installed	Drilling Method	Ground Elevation (ft amsl)	Top of Casing Elevation (ft amsl)	PVC Stickup (feet)	Casing Diameter (inches)	Borehole Diameter (inches)	Total Depth Drilled (ft bgs)	Total Well Depth (ft bgs)	Screen Length (feet)	SCREENED INTERVAL (ft bgs)	Screened Interval (ft amsl)
Current OB/	OD Area											
CMW02	8/15/96	H.S.A./A.R.	7256.61	7258.29	2.3	2	8	43	37.85	10	25.0 - 35.0	7221.61 - 7231.61
CMW03	8/9/96	H.A	NA - A	NA - A	NA - A	NA - A	NA - A	2.7	NA - A	NA - A	NA - A	NA - A
CMW04	8/15/96	H.S.A./A.R.	7249.50	7251.21	2.3	2	8	136.6	137.86	20	115.0 - 135.0	7114.50 - 7134.50
CMW05	8/9/96	H.A.	NA - A	NA - A	NA - A	NA - A	NA - A	5	NA - A	NA - A	NA - A	NA - A
CMW06	10/5/96	H.A.	7214.13	7216.05	2.5	2	4	18.6	20.96	10	8.3 - 18.3	7195.83 - 7205.83
CMW07	8/12/96	H.S.A./A.R.	7233.61	7235.50	2.3	2	8	65.8	66.55	20	44.0 - 64.0	7169.61 - 7189.61
CMW08	8/9/96	H.A.	NA - A	NA - A	NA - A	NA - A	NA - A	6	NA - A	NA - A	NA - A	NA - A
CMW09	8/9/96	H.A.	NA - A	NA - A	NA - A	NA - A	NA - A	5.5	NA - A	NA - A	NA - A	NA - A
CMW10	10/1/96	H.S.A/A.R.	7177.71	7179.59	2.5	2	8	70.85	73.07	20	50.5 - 70.5	7107.21 - 7127.21
CMW11	8/16/96	H.S.A	NA - A	NA - A	NA - A	NA - A	NA - A	12	NA - A	NA - A	NA - A	NA - A
CMW12	8/8/96	H.A.	NA - A	NA - A	NA - A	NA - A	NA - A	3.1	NA - A	NA - A	NA - A	NA - A
CMW14	9/30/96	H.S.A/A.R.	7151.56	7153.57	2.5	2	9	94.55	96.80	10	84.2 - 94.2	7057.36 - 7067.36
CMW15	8/9/96	H.A.	NA - A	NA - A	NA - A	NA - A	NA - A	3	NA - A		NA - A	NA - A
CMW16	9/6/96	H.S.A/A.R.	7082.17	7084.23	2	2	8	31.8	32.70	10	20 - 30	7052.17 - 7062.17
CMW17	8/17/96	H.S.A/A.R.	7143.72	7145.39	1.6	2	8	53	54.24	20	32.0 - 52.0	7091.72 - 7111.72
CMW18	8/21/96	H.S.A/A.R.	7156.63	7158.58	1.95	2	8	53	54.04	20	32.0 - 52.0	7104.63 - 7124.63
CMW19	9/28/96	H.S.A/A.R.	7128.11	7130.19	2.5	2	8	52.8	51.21	15	33.5 - 48.5	7079.61 - 7094.61
CMW20	10/5/96	H.A.	7193.14	7194.98	2.5	2	4	5.8	8.14	3	2.5 - 5.5	7187.64 - 7190.64
CMW21	8/12/98	H.S.A/A.R.	7083.66	7085.16	1.5	2	5.5	74.5	69.30	10	57-67	7016.66 - 7026.66
CMW22	8/10/98	H.S.A/A.R.	7077.48	7078.98	1.5	2	5.5	122	120.45	20	96.5-116.5	6960.98 - 6980.98
CMW23	9/4/98	H.S.A/A.R.	7030.22	7032.42	2.2	2	5.5	112	106.39	20	84-104	6926.22 - 6946.22
CMW24	7/31/98	H.S.A/A.R.	7094.94	7096.67	1.73	2	6.25	262	262.28	30	230-260	6834.94 - 6864.94
CMW25	9/15/98	H.S.A/A.R.	7002.19	7004.52	2.33	2	5	97	98.70	25	71-96	6906.19 - 6931.19
Closed OB/C	DD Area											
KMW09	9/28/96	H.S.A/A.R.	7186.54	7188.38	2.5	2	9	108	72.78	10	60 - 70	7116.54 - 7126.54
KMW10	9/27/96	H.S.A/A.R.	7129.65	7131.73	2.5	2	8	173	170.90	10	158 - 168	6961.65 - 6971.65
KMW11	8/6/96	H.S.A	7107.25	7109.04	1.8	2	9	63	57.34	20	35 - 55	7052.25 - 7072.25
KMW12	9/2/98	H.S.A/A.R.	7188.48	7190.23	1.75	2	8.75	75	75.33	20	53-73	7115.48 - 7135.48
KMW13	8/17/98	H.S.A/A.R.	7163.82	7165.62	1.8	2	8.75	54.5	51.94	20	32-52	7111.82 - 7131.82
KMW14	9/1/98	H.S.A/A.R.	7161.23	NA - A	NA - A	NA - A	NA - A	350	NA - A	NA - A	NA - A	NA - A

Notes:

NA - A = Not Applicable, Well Abandoned ND = No Data Available H.S.A. = Hollow Stem Auger H.A. = Hand Auger ft amsl = Feet Above Mean Sea Level ft bgs = Feet Below Ground Surface S.S. = Sandstone

.

Table 2-4 Well Development Data 1996 and 1998 Field Efforts OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

Well ID	Begin Development Date	Complete Development Date	Development Method	Depth to Water (1) (ft bgs)	Well Volume (gal)	Volume Purged (gal)	Pumping Rate (gpm)	Final pH	Final Conductivity (mmhos/cm)	Final Temperature (Celsius)	Final Turbidity (NTU)	Depth to Water (2) (ft bgs)	Recharge Rate (gph)
urrent OB/OD Area													
CMW02	9/14/96	9/16/96	2" pump	12.6	11	67	2	7.7	450	16.5	>200	ND	>5
CMW04	9/16/96	9/23/96	2" pump	28.4	33.6	170	1.5	8.4	2700	26	48	28.5	58
CMW06	10/11/96	10/13/96	1.5" bailer	17.11	1.25	3.5	NA	6.8	1200	16.5	>200	17.13	ND
CMW07	9/23/96	9/24/96	2" pump	38.3	19.2	96	0.4	7.7	1100	15	42	38.32	15
CMW10	10/4/96	10/13/96	1.5" bailer	70.12	1.95	4.5	NA	10.8	9000	16.5	>200	72.29	<1
CMW14	10/4/96	10/13/96	1.5" bailer	91.42	4.98	22.5	NA	11.2	9000	16.5	58	91.2	<1
CMW16	9/12/96	9/13/96	2" pump/1.5" bailer	22.8	6.87	64.5	2.5	7.79	1157	17.44	ND	22.1	2.5
CMW17	9/25/96	10/2/96	2" pump	22.24	21.81	110	1	7.8	700	17	50.1	22.8	1.18
CMW18	9/25/96	9/30/96	2" pump	37.4	13.92	165	1	8	650	16.5	>200	37.99	<1
CMW19	10/1/96	10/13/96	2" pump	12.92	18.28	40	<1	7.3	1100	16.5	ND	30.76	<1
CMW20	10/11/96	10/13/96	1.5" bailer	6.22	0.95	5.25	NA	6.8	600	16.5	ND	6.23	ND
CMW21	8/29/98	10/2/98	2" pump/1.5" bailer	20.89	193.3	30	0.7	9.45	929	14.2	695	24.46	21
CMW22	8/28/98	9/25/98	1.5" bailer	110.44	617	13.4	NA	9.31	943	13.7	ND	117.34	ND
CMW23	9/12/98	9/30/98	1.5" bailer	95.01	221.2	22	NA	10.57	3520	14.5	298	96.38	ND
CMW24	9/19/98	10/5/98	2" pump	51.73	647	>335	1	8.8	2900	12	210	65.83	1.2
CMW25	9/19/98	9/30/98	2" pump/1.5" bailer	46.53	145.15	107	1	8.79	935	17.4	933	64.42	0.06
losed OB/OD Area			/										
KMW09	9/30/96	10/11/96	2" pump	43.48	14.22	53	1	11	2600	16.5	79	48.42	<1
KMW10	10/1/96	10/13/96	1.5" bailer	166.54	3.94	22	NA	8.7	700	16.5	7200	167.16	<1
KMW11	9/11/96	9/16/96	2" pump	32.85	24.6	123	1	8.6	2150	20.05	ND	ND	>5
KMW12	9/15/98	10/2/98	1.5" bailer	51.51	131	57	NA	7.9	3700	13	>999	53.48	0.36
KMW13	8/31/98	9/25/98	1.5" bailer	44.24	67.15	26.5	NA	7.03	4440	14.8	557	46.99	0.12

Notes:

(1) Depth to water measured prior to development

(2) Depth to water 24 hours after development completed N

NA = Not Applicable ND = No Data Available gph = Gallons Per Hour gpm = Gallons Per Minute ft bgs = Feet Below Ground Surface NTU = Nephelometric Turbidity Units

٠

gal = Gallons mmhos/cm = micromhos per centimeter

Table 2-5 Hydraulic Conductivity Data OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

		Hydraulic C	Conductivity		
- Monitoring Well Identification	Slug in (cm/sec)	Slug out (cm/sec)	Slug in (ft/min)	Slug out (ft/min)	Screened Formation
Current OB/OD Area					
CMW02	1.5 X 10 ⁻⁵	1.4 X 10 ⁻⁵	2.9 X 10 ⁻⁵	2.7 X 10 ⁻⁵	Chinle Formation
CMW04	1.7 X 10 ⁻⁵	1.7 X 10 ⁻⁵	3.3 X 10 ⁻⁵	3.3 X 10 ⁻⁵	Chinle Formation
CMW07	6.6 X 10 ⁻⁵	5.7 X 10 ⁻⁵	1.3 X 10 ⁻⁴	1.1 X 10 ⁻⁴	Chinle Formation
CMW17	5.8 X 10 ⁻⁶	3.3 X 10 ⁻⁵	1.1 X 10 ⁻⁵	6.5 X 10 ⁻⁵	Chinle Formation
CMW21	3.3 X 10 ⁻⁶	6.6 X 10 ⁻⁶	6.5 X 10 ⁻⁶	1.3 X 10 ⁻⁵	Sonsela Sandstone Member
CMW23	9.7 X 10 ⁻⁷	3.5 X 10⁻⁵	1.9 X 10 ⁻⁶	6.9 X 10 ⁻⁵	Sonsela Sandstone Member
CMW24	2.3 X 10 ⁻⁵	2.5 X 10 ⁻⁵	4.5 X 10 ⁻⁵	5.0 X 10 ⁻⁵	Sonsela Sandstone Member
<u>Closed OB/OD Area</u>					
KMW09	1.8 X 10 ⁻⁵	1.7 X 10 ⁻⁵	3.5 X 10 ⁻⁵	3.3 X 10 ⁻⁵	Mancos Shale Formation
KMW11	3.0 X 10 ⁻⁵	4.6 X 10 ⁻⁵	5.9 X 10 ⁻⁵	9.0 X 10 ⁻⁵	Chinle Formation
KMW12	9.7 X 10 ⁻⁵	8.7 X 10 ⁻⁵	1.9 X 10 ⁻⁴	1.7 X 10 ⁻⁴	Mancos Shale Formation
KMW13	3.5 X 10 ⁻⁵	4.3 X 10 ⁻⁵	6.9 X 10 ⁻⁵	8.5 X 10 ⁻⁵	Dakota Sandstone Formation

Notes:

÷

ł

cm/sec = centimeters per second
ft/min = feet per minute

Table 2-6 Ground Water Elevations 1996, 1997, 1998, and 1999 Field Efforts OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

	Surveyed	Surveyed	Depth to	Ground Water						
	Ground Surface	Top of Casing	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
WELL ID	Elevation	Elevation	10/17/96	10/17/96	2/5/97	2/5/97	10/10/98	10/10/98	1/19/99	1/19/99
Current OB/C	D									
CMW02	7256.61	7258.29	13.25	7245.04	12.98	7245.31	9.56	7248.73	9.20	7249.09
CMW04	7249.50	7251.21	28.66	7222.55	29.86	7221.35	25.71	7225.50	26.00	7225.21
CMW06	7214.13	7216.02	17.11	7198.91	17.67	7198.35	19.56	7196.46	19.31	7196.71
CMW07	7233.16	7235.50	38.48	7197.02	38.28	7197.22	39.01	7196.49	39.09	7196.41
CMW10	7177.71	7179.59	72.72	7106.87	66.67	7112.92	17.32	7162.27	65.05	7114.54
CMW14	7151.56	7153.57	91.88	7061.69	38.15	7115.42	26.71	7126.86	29.88	7123.69
CMW16	7082.17	7084.23	21.24	7062.99	18.39	7065.84	19.68	7064.55	19.01	7065.22
CMW17	7143.72	7145.39	22.60	7122.79	22.74	7122.65	19.40	7125.99	17.32	7128.07
CMW18	7156.63	7158.58	38.16	7120.42	34.09	7124.49	36.51	7122.07	36.93	7121.65
CMW19	7128.11	7130.19	38.19	7092.00	22.05	7108.14	19.21	7110.98	20.11	7110.08
CMW20	7193.14	7194.98	5.63	7189.35	4.74	7190.24	6.96	7188.02	DRY	NA
CMW21	7083.66	7085.16	NA	NA	NA	NA	27.92	7057.24	22.55	7062.61
CMW22	7077.48	7078.98	NA	NA	NA	NA	116.27	6962.71	116.18	6962.80
CMW23	7030.22	7032.42	NA	NA	NA	NA	95.29	6937.13	95.57	6936.85
CMW24	7094.94	7096.67	NA	NA	NA	NA	70.65	7026.02	61.90	7034.77
CMW25	7002.19	7004.52	NA	NA	NA	NA	37.52	6967.00	35.31	6969.21
Closed OB/OI	2									
KMW09	7186.54	7188.38	48.42	7139.96	41.58	7146.80	40.77	7147.61	40.99	7147.39
KMW10	7129.65	7131.73	167.05	6964.68	166.69	6965.04	166.69	6965.04	166.82	6964.91
KMW11	7107.25	7109.04	33.03	7076.01	32.79	7076.25	31.49	7077.55	31.71	7077.33
KMW12	7188.48	7190.23	NA	NA	NA	NA	58.65	7131.58	50.36	7139.87
KMW13	7163.82	7165.62	NA	NA	NA	NA	44.65	7120.97	46.66	7118.96

Notes:

All depth to water measurements are in feet, measured from the top of casing.

All elevations are recorded in feet above the mean sea level.

NA = Not Applicable

.

РМС

Table 2-7 Interpreted Depths to Tops of Formations OB/ OD Areas Fort Wingate Depot Activity Gallup, New Mexico

Formation	Line 1 (feet bgs)		Line 2 (feet bgs)		Line 3 (feet bgs)		Line 4 (feet bgs)		Line 5 (feet bgs)		Line 6 (feet bgs)	
	min	max	min	max	min	max	min	max	min	max	min	max
Sonsela Sandstone Member	0	326	0	355	0	256	40	673	39	288	0	204
Blue Mesa Member	17	456	10	411	18	348	200	750	161	456	3	338
Bluewater Creek Formation, Middle Member	197	608	133	599	275	489	308	924	197	608	160	761
Moenkopi Formation	476	775	386	709	453	639	523	1,020	476	775	434	827
Glorieta Sandstone Formation	641	959	601	853	679	810	699	1,113	641	959	603	1,443

Notes:

bgs = below ground surface

min ≓ minimum

max= maximum

Table 2-8 1998 Monitoring Wells OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

12.275

								First Water 24-Hour TAT	Pogulto		Se	cond Water 24-Hour TAT R	Iba
Weil	Depth Interval	Lithologic	Geologic	Refusal	Total Depth	Depth Water	Static Depth to	Explosives Detected	Nitrate/ Nitrite Detected	Depth Water	Static Depth to	Explosives Detected	Nitrate/ Nitrite
Identification	. (ft)	Description	Formation	Depth (ft)	Drilled (ft)	Encountered (ft)	Water (ft)	(µg/1)	(µg/l)	Encountered (ft)		(µg/l)	Detected
irrent OB/OD Area													
CMW21	0 - 23	Sand/Silt/Clay	Qal	23	74.5	28	21	HMX - 5.51	2,400	58	30	2-A-4,6-DNT - 1.23	101
	23 - 37	Sandstone	Trpps					RDX - 5.30					
	37 - 42	Siltstone	Trpp					4-A-2,6-DNT - 0.52					
	42 - 61	Sandstone	Trps										
	61 - 74.5	Siltstone	Trpb										
CMW22	0 - 27.5	Sand/Silt/Clay	Qal	27.5	122	29.5	25	HMX - 4.14	1,560	96.5	89.5	2-A-4,6-DNT - 1.60	1,110
	27.5 - 41	Sandstone	Ттрр					RDX - 6.54					
	41 - 50	Siltstone	Trpp										
	50 - 58	Sandstone	Тгрр										
	58 - 79	Siltstone	Тгрр										
	79 - 96.5	Sandstone	Тгрр										
	96.5 - 116.6	Sandstone	Trps										
	116.6 - 122	Siltstone	Тгрb										
CMW23	0 - 29.5	Sand/Silt/Clay	Qal	29.5	112	46	46.5	HMX - 0.74	792	100	103	ND	303
	29.5 - 50	Sandstone	Тгрр					RDX - 1.97					
	50 - 60	Siltstone	Тгрр										
	60 - 80	Siltstone	Trpp										
	80 - 90.5	Sandstone	Тгрр										
	90.5 - 104	Sandstone	Trps										
	104 - 112	Siltstone	Trpb										
CMW24	0 - 66	Sand/Silt/Clay	Qal	66	262	223	218	2,4,6-TNT - 0.27	759	Мо	nitoring well	installed into First Water	
	66 - 239	Siltstone w/ Clay	Trpp					2-A-4,6-DNT - 1.00					
	239 - 262	Sandstone	Тгрр										
CMW25	0-74	Sand/Silt/Clay	Qal	74	97	74	46.93	ND	140	Mo	nitoring well	installed into First Water	
	74-79	Mudstone	Trpp								-		
	79-80.5	Muddy Sandstone	Тгрр										
	80.5-83	Mudstone	Ттрр										
	83-97	Sandstone	Trpps										

•••

.

PMC

~~

Table 2-8 1998 Monitoring Wells OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

								First Water			S	econd Water	
								24-Hour TAT				24-Hour TAT Re	
							Static		Nitrate/		Static		Nitrate
Well	Depth Interval	Lithologic	Geologic	Refusal	•	Depth Water	Depth to	Explosives Detected	Nitrite Detected	; •	Depth to	Explosives Detected	Nitrite
Identification	(ft)	Description	Formation	Depth (ft)	Drilled (ft)	Encountered (ft)	Water (ft)	(µg/l)	(µg/l)	Encountered (ft)	Water (ft)	(µg/l)	Detecte
losed OB/OD Area													
KMW12	0 - 27.5	Sand/Silt/Clay	Qal	34.5	75	58	56	ND	22.4	М	onitoring wel	l installed into First Water	
	27.5 - 75	Shale	Km										
KMW13	0 - 25.5	Sand/Silt/Clay	Qal	25.5	55	47	43.7	ND	695	М	nitoring wel	l installed into First Water	
	25.5 - 47	Shale	Km										
	47 - 55	Sandstone/Siltstone	Kď										
KMW14	0 - 24	Sand/Silt/Clay	Qal	24	350	No free	water encou	ntered. Borehole was aba	andoned.				
	24 - 95.5	Sandstone	Kd			•							
	95.5 - 210	Shale/Mudstone	Km			Į				l			
	210 - 275	Sandstone	Kd										
	275 - 283	Shale/Mudstone	Km			ĺ				Į			
	283 - 296	Shear Zone	Kd										
	296 - 302	Sandstone	Kd										
	302 - 308	Shale/Mudstone	Km										
	308 - 338	Sandstone	Kd										
	338 - 350	Sandstone	Jm										

Notes:

Depth to water measured from ground surface. 2-A-4,6-DNT: 2-Amino-4,6-Dinitrotoluene 4-A-2,6-DNT: 4-Amino-2,6-Dinitrotoluene 3-NT: 3-Nitrotoluene HMX: Cyclotetramethylenetetranitramine RDX: Hexahydro-1,3,5-trinitro-1,3,5-triazine ND: Not Detected Jm: Morrison Formation Kd: Dakota Formation Km: Mancos Shale Qal: Alluvial Deposits Trpb: Blue Mesa Member, Petrified Forest Formation Trpp: Painted Desert Member, Petrified Forest Formation Trpps: Painted Desert/Sonsela Lithologic Member, Petrified Forest Formation

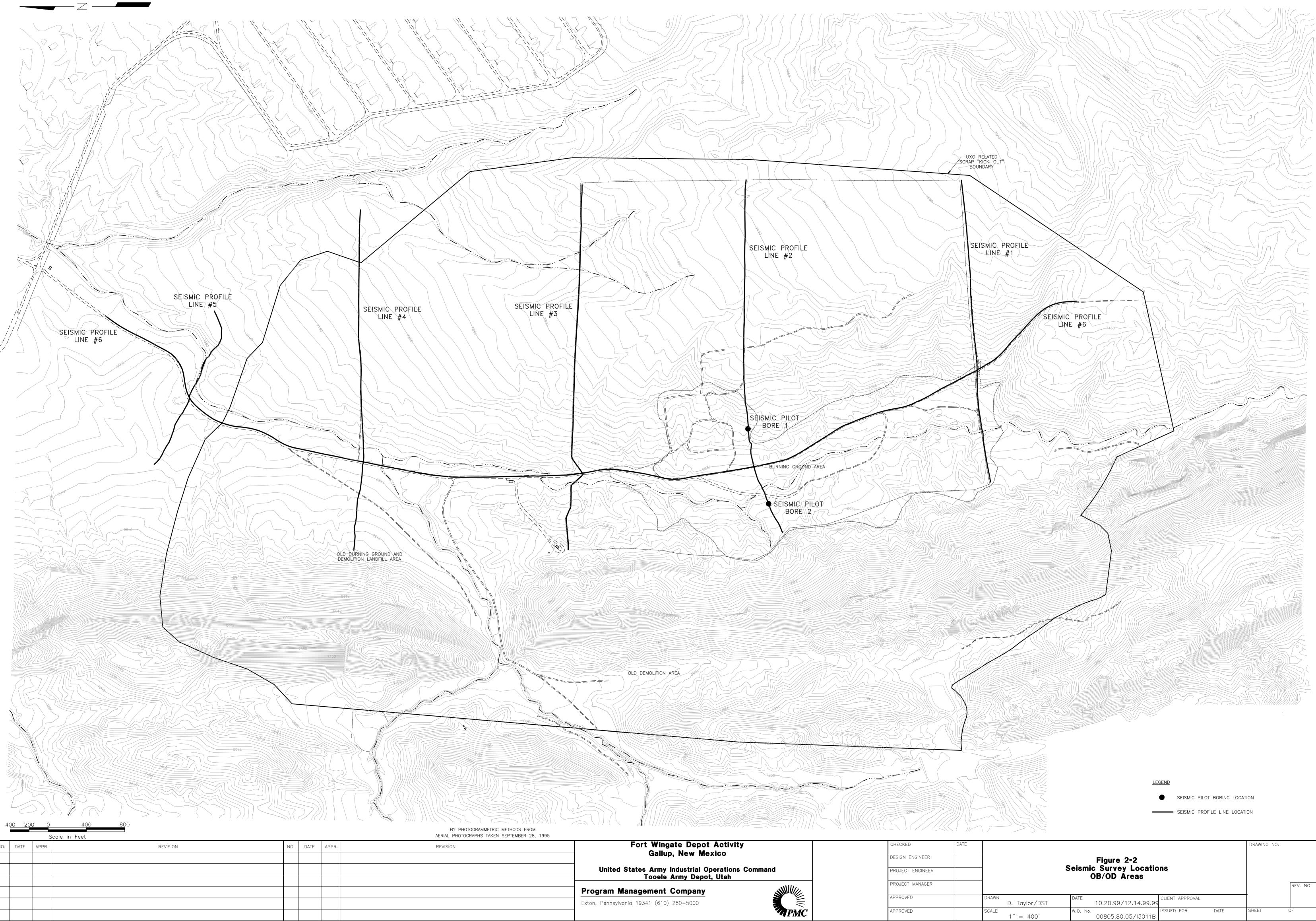
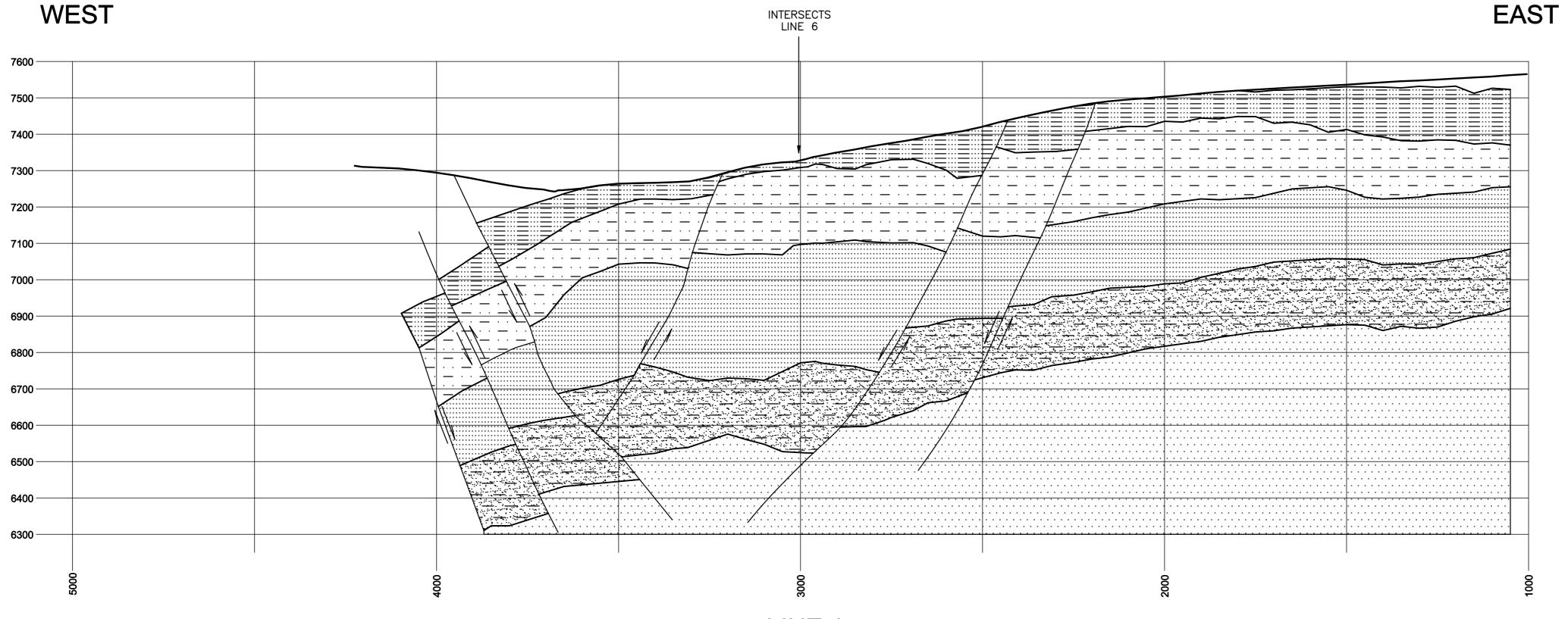
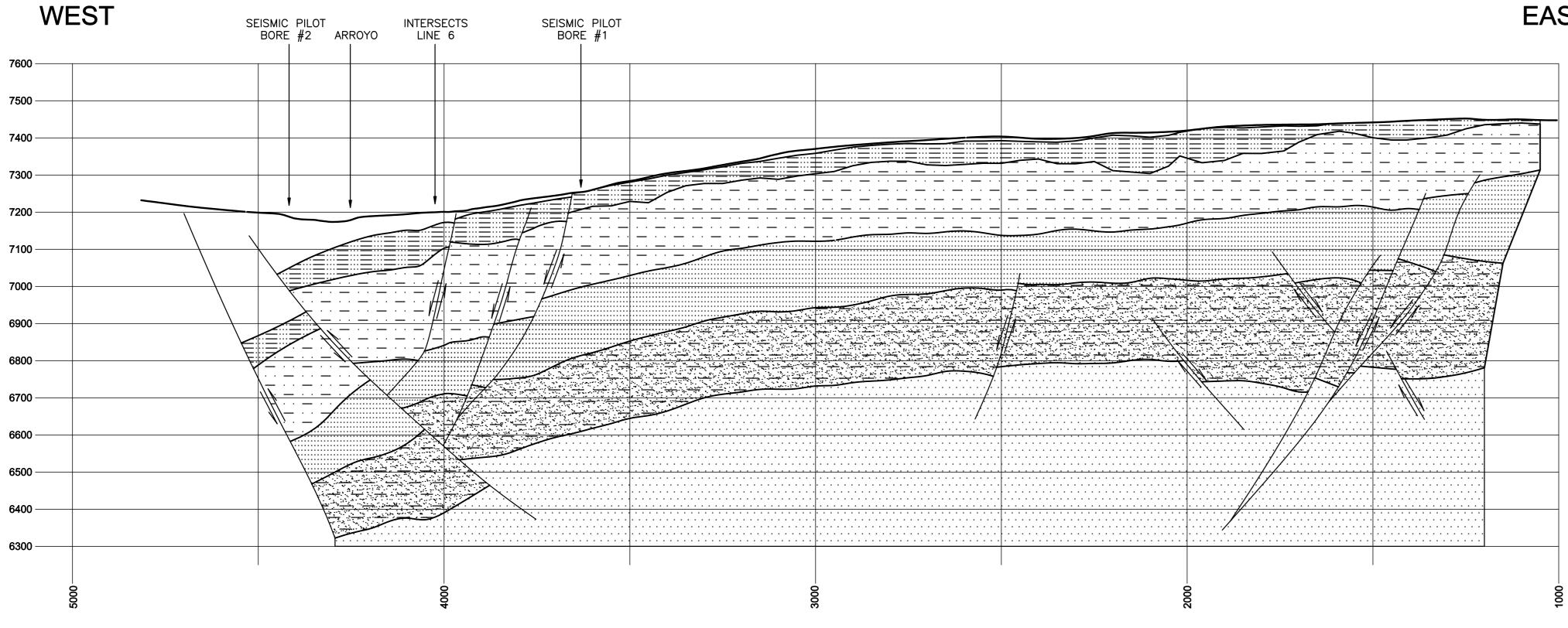

Trps: Sonsela Sandstone Member, Petrified Forest Formation

Table 2-9 Depth to Sonsela Sandstone Member OB/ OD Areas Fort Wingate Depot Activity Gallup, New Mexico

Boring	Induction "Kick" (feet bgs)	Gamma Ray Sand Signature (feet bgs)
CMW-21	44	NO
CMW-22	96	99
CMW-23	80	81
CMW-24	223	NO
CMW-25	85	NO
SPB-1	NO	30

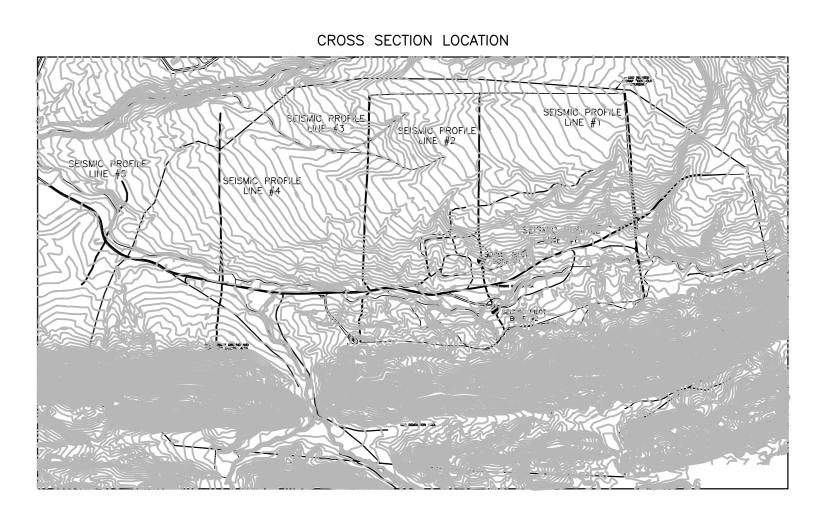
Notes:


bgs = below ground surface NO = Not Observed



		3					
NO.	DATE	APPR.	REVISION	NO.	DATE	APPR.	REVISION

5	Figure 2-2 Seismic Survey Locatio OB/OD Areas	ons		DRAWING NO.	REV. NO.
 DRAWN D. Taylor/DST	DATE 10.20.99/12.14.99.99	CLIENT APPROVAL			
SCALE 1" = 400'	W.O. No. 00805.80.05/I3011B	ISSUED FOR	DATE	SHEET	OF


NO VERTICAL EXAGGERATION

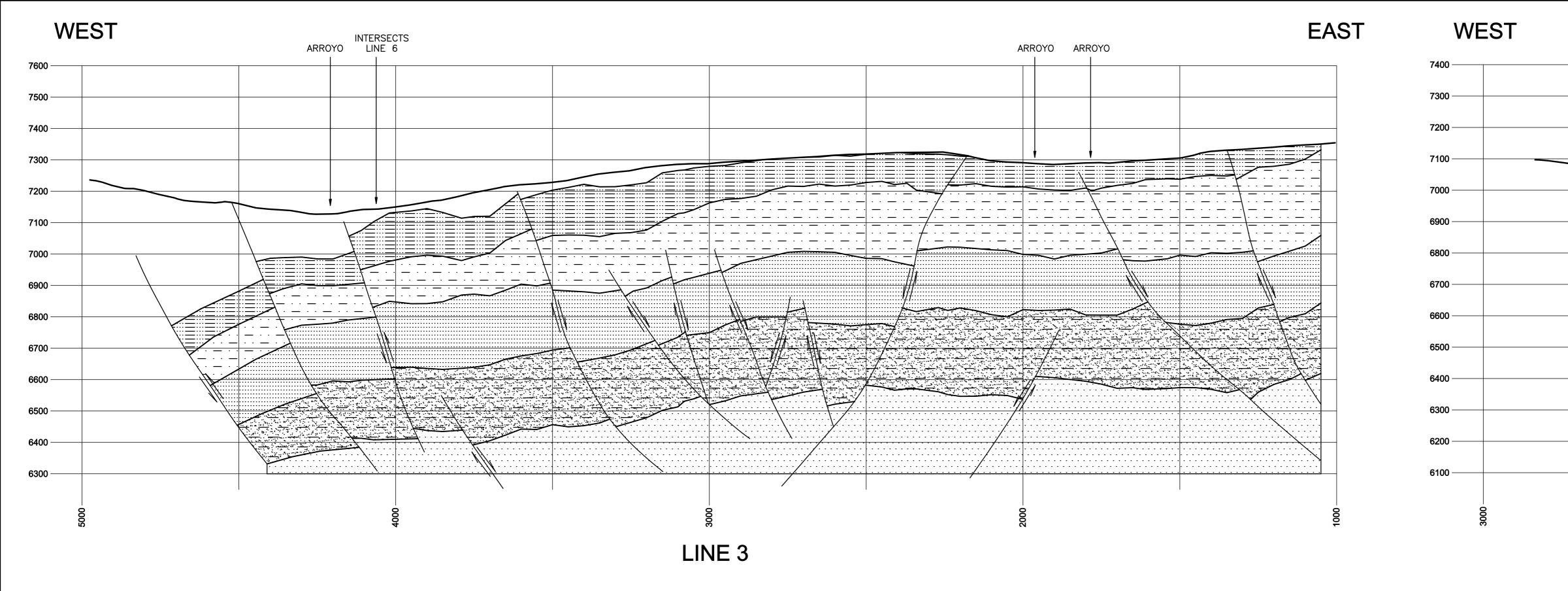
NO. DATE APPR.	REVISION	NO. DATE APPR.	REVISION	Fort Wingate Depot Activity	CHECKED	DATE		DRAWING NO.	
				Gallup, New Mexico	DESIGN ENGINEER		Figure 2-3		
				United States Army Industrial Operations Command	PROJECT ENGINEER	Interprete	Figure 2-3 d Seismic Profiles of Lines 1 and 2 OB/OD Areas		
				Tooele Army Depot, Utah	PROJECT MANAGER		OB/OD Areas		
				Program Management Company					REV. NO.
				Exton, Pennsylvania 19341 (610) 280-5000	APPROVED	DRAWN D. Taylor/DST	DATE 10.20.99/11.30.99		
				<i>Термс</i>	APPROVED	SCALE 1" = 200'	W.O. No. ISSUED FOR DATE 00805.80.05/E301	SHEET	ÔF

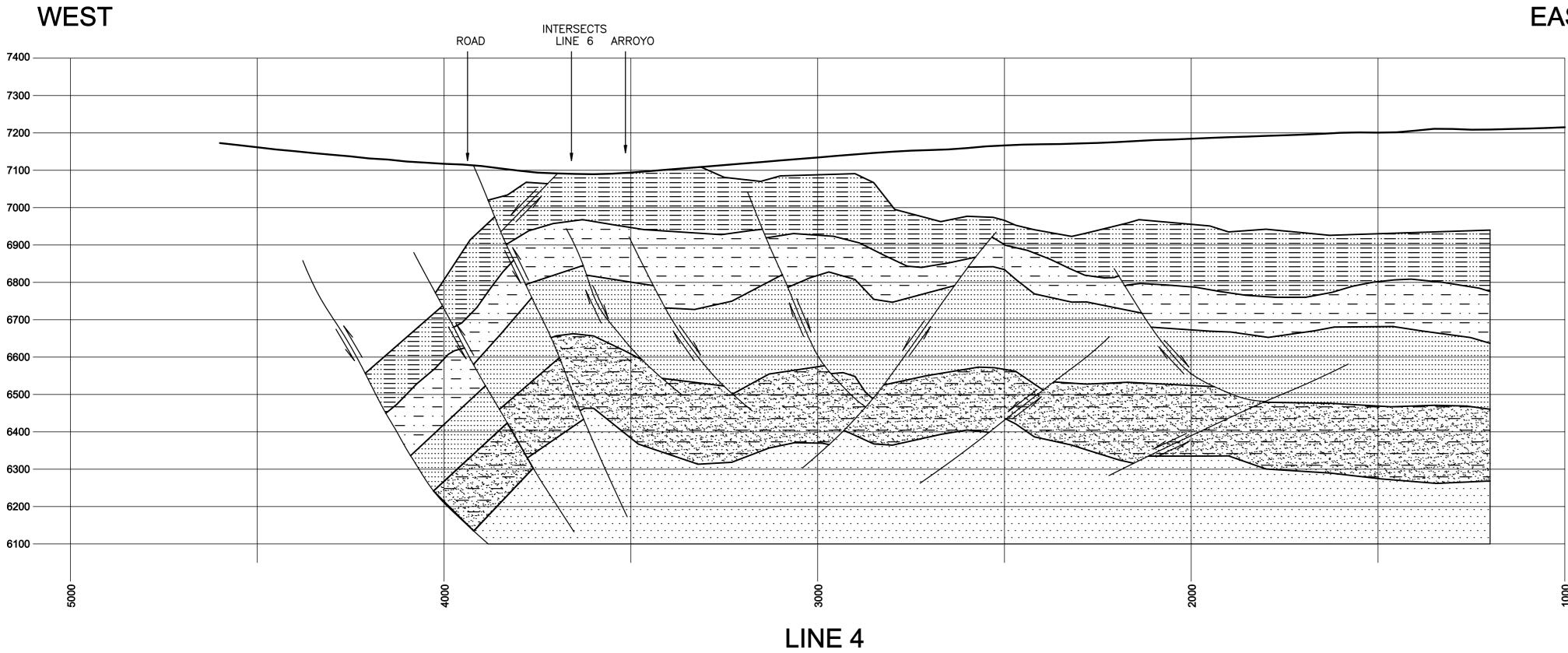
LINE 1

EAST

LINE 2

E:::=:::=::: PETRIFIED FOREST FORMATION, SONSELA SANDSTONE MEMBER

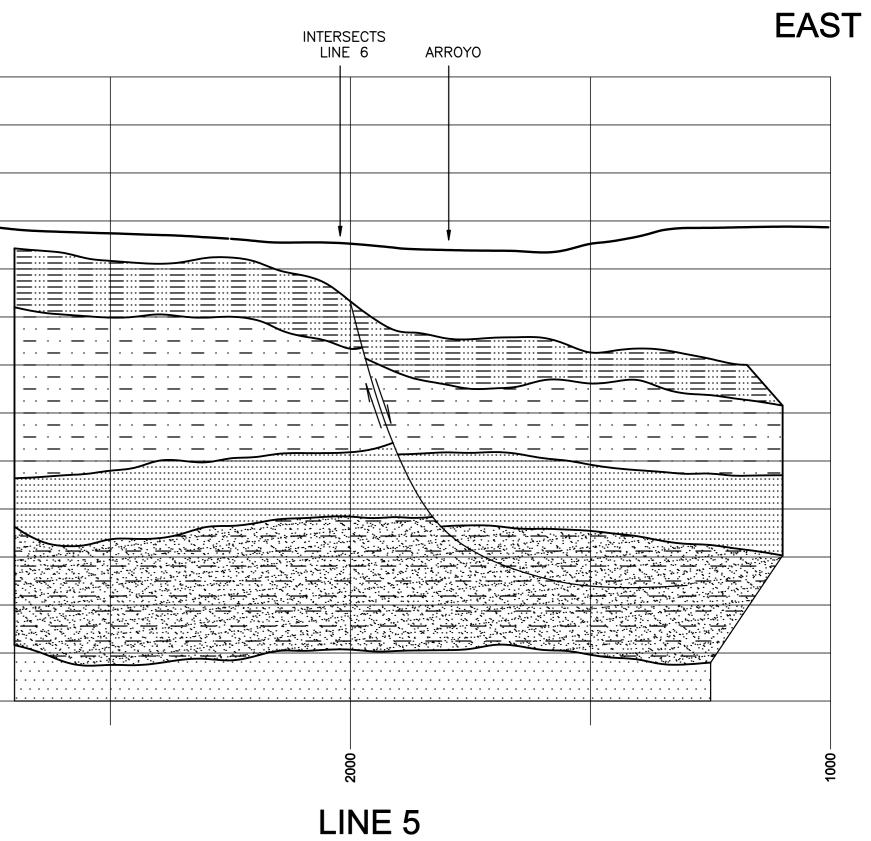

----- PETRIFIED FOREST FROMATION, BLUE MESA MEMBER


MOENKOPI FORMATION

GLORIETA SANDSTONE FORMATION

BLUEWATER CREEK FORMATION, MIDDLE MEMBER

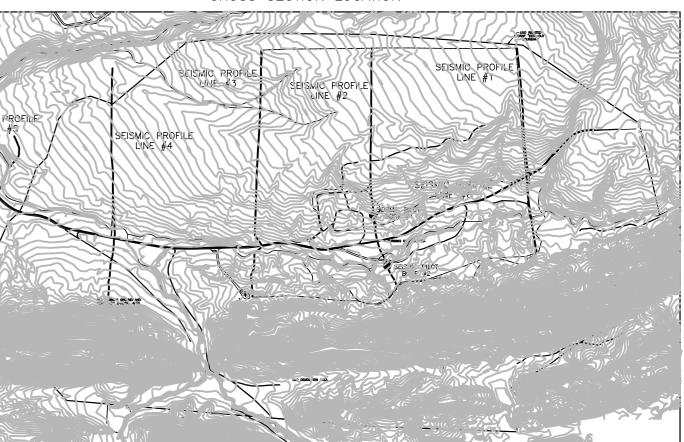
LEGEND ------- GROUND SURFACE



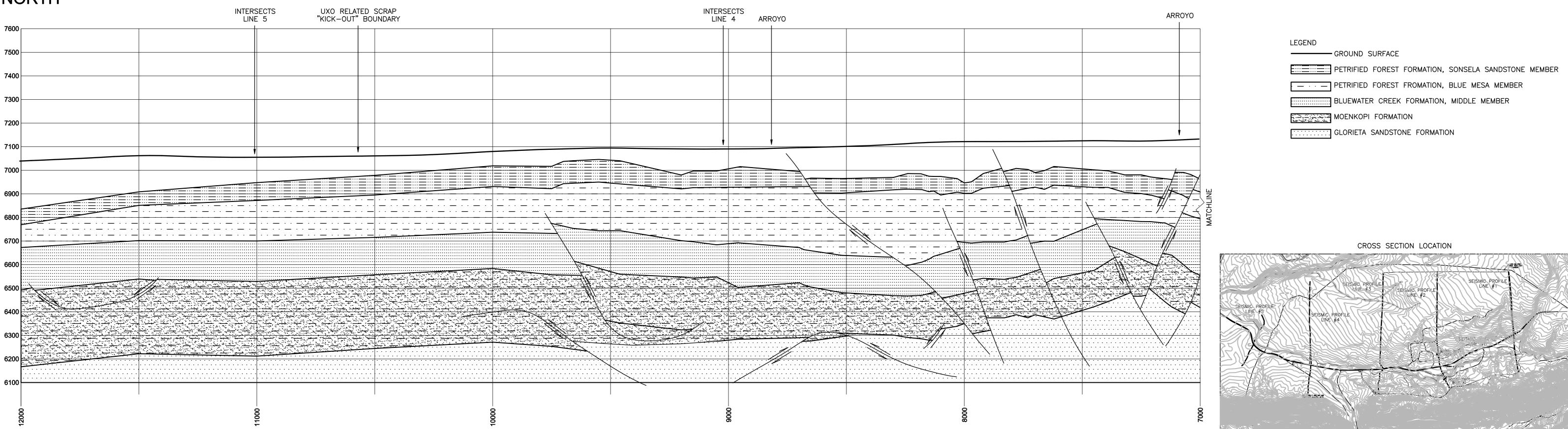
NO VERTICAL EXAGGERATION

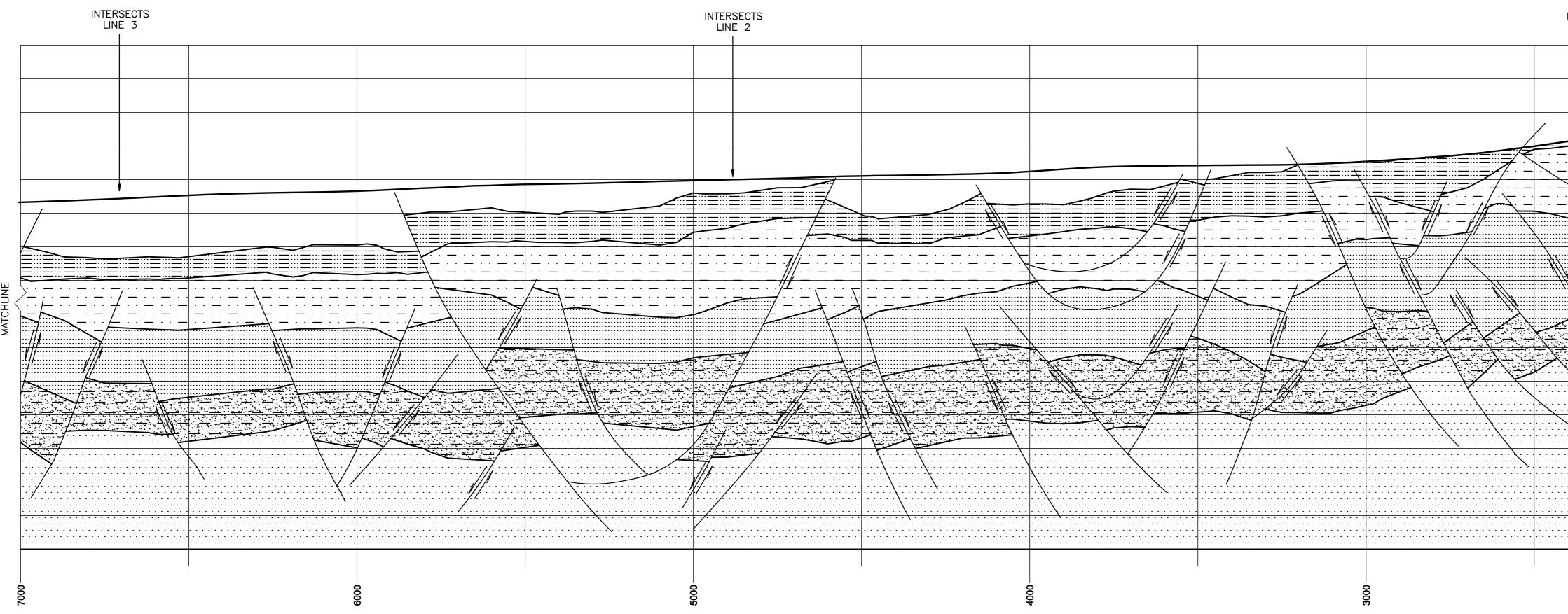
NO.	DATE	APPR.	REVISION	NO.	DATE	APPR.	REVISION

EAST


Fort Wingate Depot Activity	CHECKED
Gallup, New Mexico	DESIGN ENGINEER
 United States Army Industrial Operations Command Tooele Army Depot, Utah	PROJECT ENGINEER
 	PROJECT MANAGER
Program Management Company Exton, Pennsylvania 19341 (610) 280-5000	APPROVED
терия и пределати на страните на с	APPROVED


```
LEGEND
```


GROUND SURFACE
E:::=:::::::::::::::::::::::::::::::::
PETRIFIED FOREST FROMATION, BLUE MESA MEMBER
ENDINE STREEK FORMATION, MIDDLE MEMBER
MOENKOPI FORMATION
GLORIETA SANDSTONE FORMATION


CROSS SECTION LOCATION

Interpreted S	Figure 2-4 eismic Profiles of Line OB/OD Areas	es 3, 4 and 5	5	DRAWING NO.	
					REV. NO.
DRAWN D. Taylor/DST	DATE 10.20.99/11.30.99	CLIENT APPROVAL			
SCALE 1" = 200'	W.O. No. 00805.80.05/E302	ISSUED FOR	DATE	SHEET	ÔF

NO VERTICAL EXAGGERATION

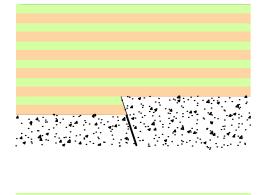
	NO	VENTIC					
NO.	DATE	APPR.	REVISION	NO.	DATE	APPR.	REVISION

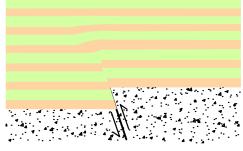
LINE 6

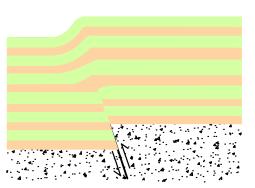
Fort Wingate Depot Activity Gallup, New Mexico	CHECKED	DATE
	DESIGN ENGINEER	
United States Army Industrial Operations Command Tooele Army Depot, Utah	PROJECT ENGINEER	
Program Management Company Exton, Pennsylvania 19341 (610) 280-5000	PROJECT MANAGER	
Exton, Pennsylvania 19341 (610) 280-5000		

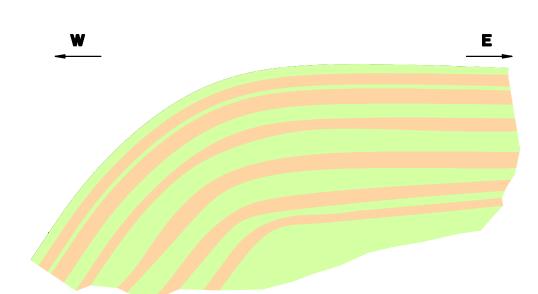
INTERSECTS LINE 1

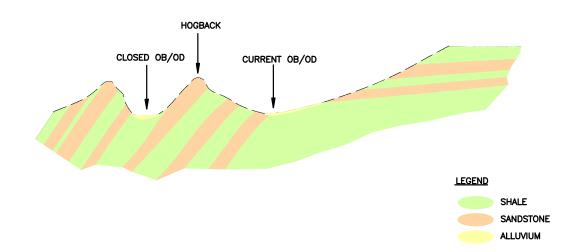
1" = 200'

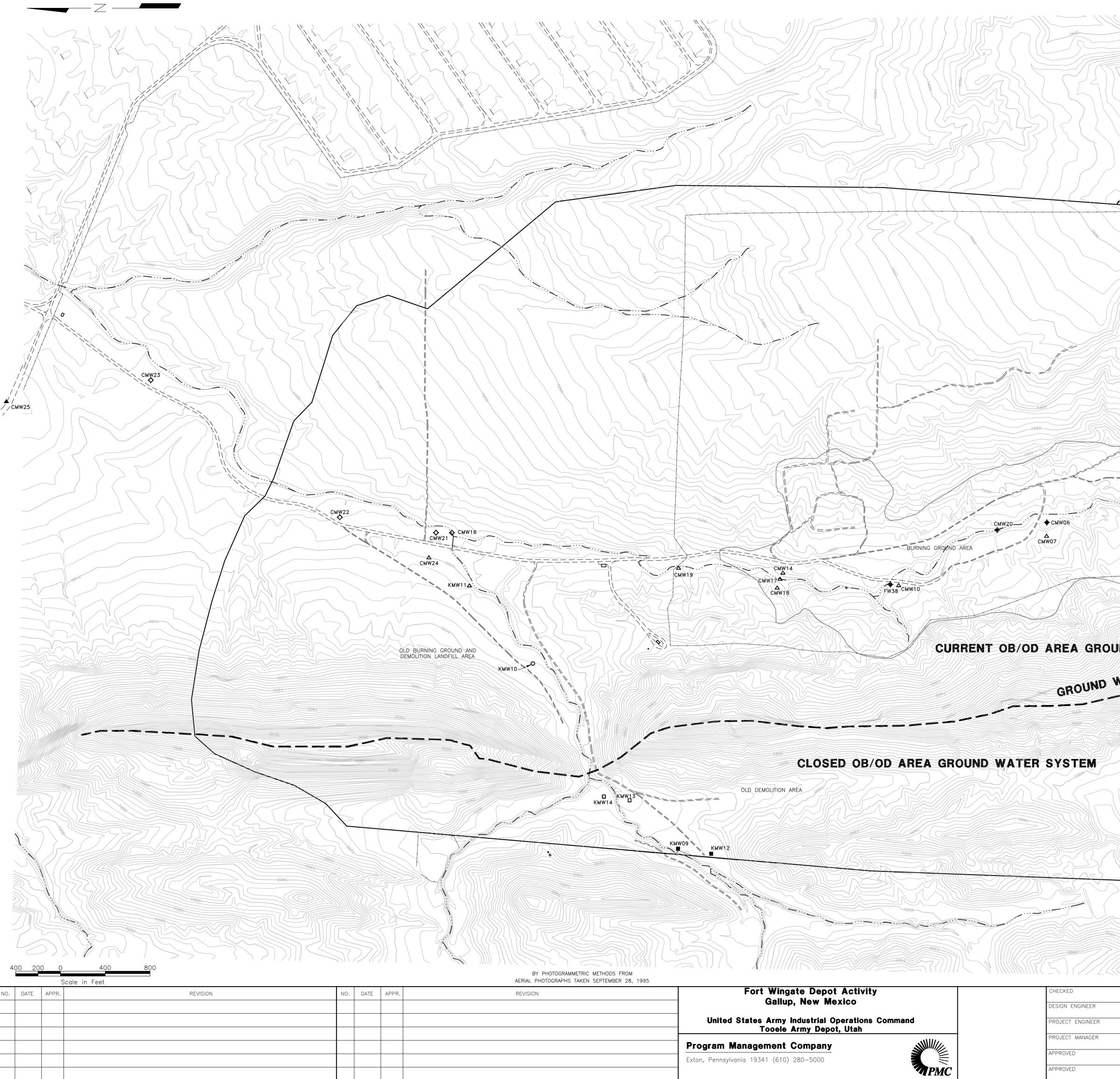

SOUTH


000	610 00
· · · · · · · · · · · · · · · · · · ·	620
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
	710
· _ · · _ · · _ · · _ · · _	730
	740
	750
	750


Interpre	Figure 2-5 Sted Seismic Profiles OB/OD Areas	of Line 6		DRAWING NO.	REV. NO.
DRAWN D. Taylor/DST	DATE 10.20.99/11.30.99	CLIENT APPROVAL			
SCALE	W.O. No.	ISSUED FOR	DATE	SHEET	ÔF


00805.80.05/E303


Figure 2-6 Formation of Geologic Structures OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico



		S	Scale in Feet				AERIAL PHOTOGRAF
NO.	DATE	APPR.	REVISION	NO.	DATE	APPR.	REVISION
		+ +		• •			

SCRAP "KICK-OUT" BOUNDARY	
CMW04 CMW02 CMW02	
UND WATER SYSTEM	1788 0022
WATER DIVIDE	09tt 098t
	r to the second se
LEGEND ALLUVIAL MONITORING WELL MANCOS SHALE FORMATION MONITORING WELL DAKOTA SANDSTONE FORMATION MONITORING WELL	
 ENTRADA SANDSTONE FORMATION MONITORING PAINTED DESERT MEMBER MONITORING WELL SONSELA SANDSTONE MEMBER MONITORING WE UNDIFFERENTIATED CHINLE FORMATION MONITORING 	ELL
DATE Figure 2-7 Ground Water Systems OB/OD Areas	DRAWING NO.

					REV. NO.
DRAWN D. Taylor/DST	DATE 10.20.99/12.14.99	0.99			
SCALE 1" = 400'	W.O. No. 00805.80.05/1301	4B ISSUED FOR	DATE	SHEET	OF

3.0 CHEMICAL DATA ASSESSMENT

The chemical data derived from the sampling and analysis of ground water, soil, sediment, and surface water samples were assessed by comparison to select environmental quality benchmark values.

Chemical data from samples collected within the OB/OD Areas at FWDA during 1996, 1997, 1998, and 1999 were sequentially screened against: 1.) Area-specific background values, 2.) Screening criteria including USEPA Maximum Contaminant Levels (MCLs) and Region VI risk-based screening levels (RBLs) and 3.) Closure Performance Standards (CPSs) developed for the OB/OD Areas.

Macronutrients have been excluded from the screening process for soil, sediment, surface water, and ground water samples. These constituents include calcium, magnesium, potassium, and sodium and were excluded because of the low toxicity associated with each of these constituents.

In soil, aluminum was also excluded from the screening assessment. Aluminum is a major component of the aluminosilicate soils found in the OB/OD Areas. Elevated concentrations of aluminum are expected as a result of the mineral composition of the soil, and are not related to anthropogenic activities at the OB/OD Areas. Several other constituents have been excluded from the screening assessment in order to focus this data assessment toward the constituents that are most likely to produce adverse health effects. Other excluded constituents include chloride, fluoride, and sulfate.

3.1 BACKGROUND CONCENTRATIONS OF COCS

3.1.1 Ground Water

Separate background values were developed for both the Closed and Current OB/OD Areas because different geologic units are present in each area, resulting in different inorganic constituent concentrations in the ground water. As discussed in Section 2.0, two samples were collected from the same well in the Closed OB/OD Area ground water system (KMW12), and three samples were collected from the same well in the Current OB/OD Area ground water system (CMW02). Figure 3-1 (Appendix B) shows the locations of the background monitoring wells. Insufficient data were available to determine background values based upon a statistic distribution analysis. Background inorganic

concentrations were determined for the Closed and Current OB/OD Areas based on the maximum concentration detected during these sampling rounds. This value was then set as the background concentration for that inorganic constituent for that area. For those constituents that were not detected in the background data set, the background screening values were set at zero to provide a conservative bias to this initial screening step. Table 3-1 presents the data from each sampling event, and the background values for the Closed and the Current OB/OD Areas.

3.1.2 Soil

Separate background values were developed for both the Closed and Current OB/OD Areas because different geologic units are exposed at the land surface in each area, resulting in different accessory mineral (i.e., native metals) content of the soils. As discussed in the Phase IA Report, a total of 20 samples each were collected from each of the two OB/OD Areas. Figure 3-1 (Appendix A) shows the locations of the background sampling stations. Background inorganic concentrations were determined for the Closed and Current OB/OD Areas based on a statistical distribution analysis of the data (ERM, 1996b). For each inorganic constituent and each area, the data from 20 samples were inspected, normal and log-normal distributions were superimposed, and a best-fit determination was made regarding which distribution more accurately described the data. Using this determination, the 95-percentile distribution concentration (i.e., the 95th percentile upper control limit of the distribution) was calculated. This value was then set as the background concentration for that inorganic constituent for that area.

The range of detected background concentrations, the maximum detected concentrations, and the 95th percentile upper confidence limit (UCL) concentrations are shown in Table 3-2. All soil and sediment sample data were compared to the 95th UCL concentrations. For those constituents that were not detected in the background data set, the background screening values were set at zero (0) to provide a conservative bias to this initial screening step.

3.1.3 Sediment

Sediment background levels were derived for each of the OB/OD Areas by selecting the maximum concentration detected in background sediment samples. In the Closed OB/OD Area two background locations were sampled (KSW01 and KSW03) and in the Current OB/OD Area

three background locations were sampled (CSW01, CSW02, and CSW03) (Figure 3-1, Appendix A). Data that were below the detection limit or were rejected due to blank qualification were not considered in the selection of a background value. The background sediment concentrations are presented in Table 3-3.

-3.1.4 Surface Water

Surface water background levels were derived for the Closed and Current OB/OD Areas. The background screening levels were derived by selecting the maximum concentration detected in background surface water samples. There were two background sample locations (KSW01 and KSW03) in the Closed OB/OD Area and two background sample locations (CSW01 and CSW03) in the Current OB/OD Area (Figure 3-1, Appendix A). Data that were not detected or were rejected due to blank qualification were not considered in the selection of a background value. The background surface water concentrations are presented in Table 3-4.

3.2 SCREENING CRITERIA

3.2.1 Ground Water

3.2.1.1 USEPA Maximum Contaminant Levels

MCLs were used as the screening level in all instances where a primary MCL existed. Secondary MCLs were not considered in this screening because they are based on aesthetic qualities of drinking water that are not related to health effects. Lead and copper screening levels are based on the treatment technology levels. Because this data assessment considers possible health effects downgradient of the source at a compliance monitoring point only, the health-based screening levels were used in the data assessment. Only the explosive compounds, cobalt, and vanadium lacked MCLs. The MCLs are presented in Table 3-5.

3.2.1.2 USEPA Region VI Risk-Based Screening Levels

In instances where a primary MCL did not exist, the USEPA Region VI RBLs (Table 3-6) were used to assess the data following the initial comparison to background. The RBLs used were based on the 10⁻⁶ risk level or a hazard quotient of one, and residential land use. The use of

residential-based screening levels allows for a conservative bias during this stage of the data assessment process because the OB/OD Areas will remain under Army control; therefore, there will be no future use of ground water within the OB/OD Areas.

3.2.2 Soil and Sediment

USEPA Region VI RBLs (Table 3-7) were used to assess soil and sediment data following the initial comparison to background. The RBLs used were based on the 10⁻⁶ risk level and residential land use (USEPA, 1999). The use of residential-based screening levels allows for a conservative bias during this stage of the data assessment process, because the OB/OD Areas will remain under Army control; therefore, future use will be consistent with current use. For those constituents that did not have an RBL, site specific values were calculated using the same methodologies that generated the established Region VI RBLs.

3.2.3 Surface Water

Surface water samples were collected during sporadic storm events during which surface water was present for only a short period of time. Surface water screening levels are based upon perennial surface water flow conditions. Because no perennial surface water flow conditions exist within the OB/OD Areas, no screening levels were compared to the surface water analytical data.

3.3 RISK-BASED CLOSURE PERFORMANCE STANDARDS

3.3.1 Ground Water

CPSs for ground water were derived by the Army to demonstrate compliance with potential upper bound risks and drinking water standards. All data exceeding the screening criteria were screened against the CPSs. In instances where the screening criterion selected was an MCL, then the same value was used as the CPSs. In instances where the constituent's screening criterion was the Region VI RBL, then the following steps were used to derive the CPS:

- The carcinogenic status of the constituent was evaluated;
- For noncarcinogenic constituents, RBLs were used as CPSs;

• For carcinogenic constituents, the RBL was adjusted by multiplying the RBL by 100. This value represents the difference between risks at the 1 x 10⁻⁶ level and the 1 x 10⁻⁴ risk level.

The ground water CPSs are shown in Table 3-8.

-3.3.2 Soil and Sediment

Constituents that exceeded the Region VI RBLs were compared to sitespecific CPSs developed for the OB/OD Areas. The CPSs were established by the Army to be protective of human health under realistic site-specific future land use scenarios. The Army intends that the OB/OD Areas will remain under the administrative care of the Army in perpetuity, and will continue to exist as limited access areas. Therefore, realistic current and future human receptors are restricted to on-site remediation workers and off-site recreational users. For an on-site remediation worker, direct contact with contaminated soils or solid waste residues, as well as incidental ingestion and dust inhalation were considered. For off-site recreational users, only the wind blown dust inhalation pathway was considered. The specific exposure assumptions used to generate the soil and sediment CPSs are shown in Table 3-9.

The CPSs were calculated based on standard intake and toxicity assumptions. The equations derived to calculate the CPSs are based on USEPA guidance for developing preliminary remediation goals (USEPA, 1991). The equations, presented below, have been modified to account for site-specific dust generation conditions.

OFF-SITE FUGITIVE DUST EXPOSURE FOR CARCINOGENIC EFFECTS:

$$CPS_{soil} = \frac{TR x BW x AT x 365^{days} year}{EF x ED \left[CPF_i x IR_{air} x \left(\frac{E_i x L x CF}{u x H} \right) \right]}$$

Where:

CPS _{soil}	= Concentration of constituent in soil (mg/kg)
TR	= Target Risk (unitless, 1E-6)
AT	= Averaging Time (70 years)
BW	= Body Weight of an adult (70 kg)
EF	= Exposure Frequency (days/year)
ED	= Exposure Duration (years)
CPFi	= Inhalation CPF ((mg/kg-day) ⁻¹)
IR_{air}	= Inhalation Rate (m³/day)

3-5

$\mathbf{E}_{\mathbf{i}}$	= Dust Emission Rate - OB/OD Areas $(1x10^{-9} \text{ mg/m}^2/\text{sec})$
L	= Length of contaminated site perpendicular to wind (71.1 m
	based on the area of the debris/refuse piles)
u	= Mean annual wind speed (4 m/sec (Ruffner, 1985)
Н	= Height of human inhalation (1.5 m).

OFF-SITE FUGITIVE DUST EXPOSURE FOR NON-CARCINOGENIC EFFECTS:

$$CPS_{soil} = \frac{THIxBWxATx365^{days}/year}{EFxED\left[\frac{1}{RfD_{i}}xIR_{air}x\left(\frac{E_{i}xLxCF}{uxH}\right)\right]}$$

Where,

- THI = Target Hazard Index (unitless, 1)
- AT = Averaging Time (years, this is equal to the exposure duration)
- ED = Exposure Duration (years)
- $RfD_i =$ Inhalation Reference Dose (mg/kg-day).

The soil cleanup levels, at the 10⁻⁶ risk level, resulting from the use of the equations listed above for on-site remediation workers and off-site recreational users are shown in Table 3-10 and Table 3-11, respectively.

3.3.3 Surface Water

Surface water CPSs are based upon perennial surface water flow conditions. As described previously, no perennial surface water flow conditions exist within the OB/OD Areas; therefore, no CPSs were compared to the surface water analytical data.

3.4 GROUND WATER SAMPLES

The drilling, logging, and seismic data collected in the OB/OD Areas from 1996 through 1998 were used to describe the hydrogeologic settings of the OB/OD Areas (Section 2). Two separate hydrogeologic systems have been identified. Within each of these hydrogeologic systems, monitoring wells have been screened in discrete geologic formations. Ground water chemistry can be affected by the media through which it is transported;

thus, ground water chemical data from monitoring wells screened in each particular formation will be discussed together.

Four ground water sampling events were conducted in the OB/OD Areas, two following installation of monitoring wells in 1996, and two following installation of additional monitoring wells in 1998. Data collected during presample purging and field analytical results for each of the sampling events are presented in Tables 3-12 through 3-15.

3.4.1 Closed OB/OD Area Ground Water System

The Closed OB/OD Area ground water system exists in the area located on the western side of the Hogback. Three monitoring wells were installed within this system, two screened within the Mancos Shale Formation and one screened within the Dakota Sandstone Formation (Figure 2-7).

3.4.1.1 Mancos Shale Formation Ground Water

Two wells are screened in the Mancos Shale Formation, KMW09 and the background well KMW12 (Figure 2-7). Ground water samples have been collected from KMW09 four times and from KMW12 twice. The ground water samples were submitted to an off-site laboratory for chemical analysis.

3.4.1.1.1 Comparison to Background Levels

Table 3-16 lists the detected constituents in KMW09 that exceeded the Closed OB/OD Area ground water system background levels. One explosive compound was detected in the ground water sample collected during the first sampling event. Explosives have not been detected during the three subsequent sampling rounds; thus, the initial result appears anomalous and may have been the result of matrix interference affecting the analytical results. Several inorganic constituents were detected at concentrations exceeding their respective background levels.

3.4.1.1.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to screening criteria. Table 3-17 lists those detected constituents in the well screened within the Mancos Shale Formation that exceeded the screening criteria. The number of exceedances of the screening criteria was substantially less than those for background. The only constituent

РМС

detected in KMW09 that exceeded the screening criteria was ammonia, and this is because there is no screening level for this constituent. The only risk-based level for ammonia is based upon inhalation and not ingestion; thus, this level was not used to evaluate the ground water data. The concentration of ammonia detected in ground water from the Mancos Shale Formation would not pose an unacceptable risk if consumed.

-3.4.1.1.3 Comparison to Closure Performance Standards

All sample constituents that exceeded screening criteria were compared to site-specific CPSs. Table 3-18 lists those detected constituents in the well screened within the Mancos Shale Formation that exceeded the CPSs. Figure 3-2 (Appendix A) shows the location of the well within the Closed OB/OD Area ground water system at which constituents were detected at concentrations exceeding the CPSs. The only constituent detected in KMW09 that exceeded the CPS was ammonia, and this is because there is no CPS for this constituent, as discussed above. The concentration of ammonia detected in ground water from the Mancos Shale Formation does not warrant further action.

3.4.1.2 Dakota Sandstone Formation Ground Water

One well is screened in the Dakota Sandstone Formation, KMW13 (Figure 2-7). Ground water samples have been collected from this well two times and submitted for chemical analysis.

3.4.1.2.1 Comparison to Background Levels

Table 3-19 lists the detected constituents in KMW13 that exceeded the Closed OB/OD Area ground water system background levels. No explosive compounds were detected in the ground water samples collected from this well. Several inorganic constituents were detected at concentrations exceeding their respective background levels.

3.4.1.2.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to screening criteria. Table 3-20 indicates that no constituent concentrations detected in ground water from the Dakota Sandstone Formation exceed the screening criteria.

3.4.1.2.3 Comparison to Closure Performance Standards

All sample constituents that exceeded screening criteria were compared to site-specific CPSs. Table 3-21 indicates that no constituent concentrations

detected in ground water from the Dakota Sandstone Formation exceed the CPSs.

3.4.2 Current OB/OD Area Ground Water System

The Current OB/OD Area ground water system exists in the area located on the eastern side of the Hogback. Sixteen bedrock monitoring wells were installed within this system, 10 screened within undifferentiated intervals of the Chinle Formation, one screened within the Painted Desert Member, four screened within the Sonsela Sandstone Member, and one screened within the Entrada Sandstone Formation (Figure 2-7).

3.4.2.1 Undifferentiated Chinle Formation Ground Water

Ten wells are screened within undifferentiated intervals of the Chinle Formation (Figure 2-7). Ground water samples have been collected during each of the four sampling events from the wells that existed at the time of collection. Nine wells were sampled during October 1996 and February 1997, and ten wells were sampled during October 1998 and January 1999. The ground water samples were submitted to an off-site laboratory for chemical analysis.

3.4.2.1.1 Comparison to Background Levels

Table 3-22 lists the detected constituents in wells screened in the undifferentiated Chinle Formation that exceeded the Current OB/OD Area ground water system background levels. Explosive compounds were detected in the ground water samples collected during each of the four sampling events from three wells, CMW17, CMW18, and CMW19. These wells are located downgradient of the residue/debris piles situated along the Current OB/OD Area arroyo (Figure 2-7). The concentration of each of the explosive constituents in these three wells increased from the first sampling event in October 1996 to the second sampling event in February 1997; however, a trend of decreasing concentrations can be seen from the second sampling event through the fourth sampling event in January 1999.

One explosive compound was detected in the ground water sample collected from KMW11 during the October 1996 sampling event. Explosives have not been detected during the three subsequent sampling rounds; thus, the initial result appears anomalous and may have been the result of matrix interference affecting the analytical results. Many inorganic constituents were detected at concentrations exceeding their respective background levels. When data for the four sampling events are compared, the same general pattern noted for the explosive compounds of increasing then decreasing constituent concentrations is observed for the inorganic constituents.

3.4.2.1.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to screening criteria. Table 3-23 lists those detected constituents in wells screened in the undifferentiated Chinle Formation that exceeded the screening criteria. The number of exceedances of the screening criteria was substantially less than those for background. Explosive compound concentrations exceeded the screening criteria in two wells (CMW17 and CMW18) located downgradient of the residue/debris piles adjacent to the Current OB/OD Area arroyo (Figure 2-7). In CMW17, only the concentration of a single explosive constituent in the sample collected during February 1997 exceeded the screening criterion. Additionally, the concentration of the one explosive compound detected in the ground water sample collected from KMW11 exceeded the screening criterion.

Seven metal/inorganic constituents were detected at concentrations exceeding the screening criteria. Aluminum, ammonia, chromium, and iron were detected in multiple ground water samples at concentrations exceeding the screening criteria. Selenium, cadmium, and lead were each detected in one ground water sample at concentrations exceeding the screening criteria.

Comparison to Closure Performance Standards

All sample constituents that exceeded screening criteria were compared to site-specific CPSs. Table 3-24 lists those detected constituents in wells screened in the undifferentiated Chinle Formation that exceeded the CPSs. Figure 3-2 (Appendix A) shows the locations of the wells within the Current OB/OD Area ground water system at which constituents were detected at concentrations exceeding the CPSs.

The concentrations of a single explosive compound exceeded the CPS in only one well, CMW18, during each of the sampling events. This well is located downgradient of the residue/debris piles adjacent to the Current OB/OD Area arroyo (Figure 3-2, Appendix A). As discussed above, a trend of decreasing concentrations can be seen from the second event sampling in February 1997 through the fourth sampling event in January 1999.

PMC

3.4.2.1.3

Five metal/inorganic constituents (ammonia, cadmium, chromium, lead, and selenium) exceeded the CPSs. Three of these constituents (cadmium, lead, and selenium) were only detected at this level in one ground water sample. The exceedances of the CPSs were nearly all in ground water samples collected from two wells, CMW10 and CMW14. The screened interval of these wells are located at similar depths bgs. The presample purge data indicates that the turbidity of water withdrawn from CMW10 and CMW14 is between two and four times greater than the maximum turbidity of the other wells. In seven instances, the concentration of a particular constituent in a total sample fraction exceeds the concentration of that constituent in the filtered fraction of the same sample. In five instances the opposite situation occurred, the filtered fraction concentration.

The results of the hydrogeologic studies conducted in the OB/OD Areas must be considered in the evaluation of potential exposure to impacted water within the undifferentiated Chinle Formation (Section 2). Borehole logging and seismic data collected during 1997 indicate that seismic pilot boring SPB 1, drilled on the western side of the arroyo within the Current OB/OD Area, encountered shale intervals of the Painted Desert Member from the ground surface to a depth of approximately 250 feet bgs. Monitoring wells CMW10, CMW14, and CMW18 are located within, or on the western side of, this arroyo. Because these wells are screened in moist zones within a silty clay material, it is likely that CMW10, CMW14, and CMW18 are screened within shale intervals of the Painted Desert Member. Ground water from these intervals is thought to be migrating through fractures to the Sonsela Sandstone Member, and then migrating generally northward following the bedrock dip and topography. Thus, potential exposure to impacted ground water within the Current OB/OD Area undifferentiated Chinle Formation wells is addressed by the potential exposure considerations for the Sonsela Sandstone Member wells.

3.4.2.2 Painted Desert Member Ground Water

One well, CMW25, is screened within the Painted Desert Member (Figure 2-7). Ground water samples were collected during the October 1998 and January 1999 sampling events. The ground water samples were submitted to an off-site laboratory for chemical analysis.

3.4.2.2.1 Comparison to Background Levels

Table 3-25 lists the detected constituents at well CMW25 that exceeded the Current OB/OD Area ground water system background levels. No explosive compounds were detected in the ground water samples

collected from this well. Several inorganic constituents were detected at concentrations exceeding their respective background levels.

3.4.2.2.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to screening criteria. Table 3-26 lists those detected constituents that exceeded the screening criteria. The number of exceedances of the screening criteria was substantially less than those for background. Four metals (aluminum, chromium, iron, and lead) were detected at concentrations exceeding the screening criteria during the October 1998 sampling event. No inorganic constituents were detected in CMW25 at concentrations exceeding the screening criteria during the January 1999 sampling event.

3.4.2.2.3 Comparison to Closure Performance Standards

All sample constituents that exceeded screening criteria were compared to site-specific CPSs. Table 3-27 lists those detected constituents that exceeded the CPSs. Figure 3-2 (Appendix A)shows the location of the well within the Current OB/OD Area ground water system at which constituents were detected at concentrations exceeding the CPSs.

Two metals, chromium and lead, were detected at concentrations exceeding the CPSs during the October 1998 sampling event. No inorganic constituents were detected in CMW25 at concentrations exceeding the CPSs during the January 1999 sampling event. Thus, the presence of inorganic constituents in CMW25 at concentrations exceeding the CPSs may have been a temporary condition.

3.4.2.3 Sonsela Sandstone Member Ground Water

Four wells, CMW16, CMW21, CMW22, and CMW23, are screened within the Sonsela Sandstone Member (Figure 2-7). Ground water samples have been collected during each of the four sampling events from the wells that existed at the time of collection. One well (CMW16) was sampled during October 1996 and February 1997, and all four wells were sampled during October 1998 and January 1999. The ground water samples were submitted to an off-site laboratory for chemical analysis.

3.4.2.3.1 Comparison to Background Levels

Table 3-28 lists the detected constituents in wells screened in the Sonsela Sandstone Member that exceeded the Current OB/OD Area ground water

system background levels. Two explosive compounds, cyclotetramethylenetetranitramine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were detected in the ground water samples collected during each of the four sampling events from CMW16. No clear trend is evident based upon the HMX concentrations measured over time; however, the RDX concentration has generally decreased over the time period of the four sampling events. Well CMW16 is located downgradient of the residue/debris piles adjacent to the Current OB/OD Area arroyo (Figure 2-7). Based upon the hydrogeologic discussion presented in Section 2, shallow ground water or surface water in contact with the residue/debris piles appears to be dissolving explosive constituents and transporting them into the Sonsela Sandstone Member. No explosive constituents were detected in any of the Sonsela Sandstone Member monitoring wells that are located downgradient of CMW16. It is likely that the explosive constituents detected in the 24-hour TAT samples collected from CMW21, CMW22, and CMW23 were the result of matrix interference caused by the turbidity of the grab samples, and are not representative of ground water constituent concentrations. The lateral extent of ground water impacted by explosive constituents occurs between the locations of monitoring wells CMW16 and CMW21.

Many inorganic constituents were detected at concentrations exceeding their respective background levels. No clear trend is evident based upon the concentrations measured over time.

Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to screening criteria. Table 3-29 lists those detected constituents in wells screened in the Sonsela Sandstone Member that exceeded the screening criteria. The number of exceedances of the screening criteria was substantially less than those for background. RDX was the only explosive compound detected in the ground water samples collected from the Sonsela Sandstone Member that exceeded the screening criteria. RDX was detected at concentrations exceeding the CPS in CMW16 during each of the four sampling events. As discussed above, CMW16 is the most downgradient impacted well that is screened in the Sonsela Sandstone Member, and the concentration of RDX in this well has decreased over time.

Five inorganic/metal constituents, aluminum, ammonia, antimony, iron, and lead were detected at concentrations exceeding the screening criteria. None of these constituents were detected at concentrations exceeding the screening criteria in CMW22.

PMC

3.4.2.3.2

Comparison to Closure Performance Standards

3.4.2.3.3

All sample constituents that exceeded screening criteria were compared to site-specific CPSs. Table 3-30 lists those detected constituents in wells screened in the Sonsela Sandstone Member that exceeded the CPSs. Figure 3-2 (Appendix A) shows the locations of the wells within the Current OB/OD Area ground water system at which constituents were detected at concentrations exceeding the CPSs.

Three inorganic/metal constituents (ammonia, antimony, and lead) were detected at concentrations exceeding the CPSs. As discussed in Section 3.4.1.1.2, there is no CPS for ammonia; the concentration of ammonia detected in ground water from the Sonsela Sandstone Member does not warrant further action. The antimony concentration only exceeded the CPS in CMW16. Lead concentrations exceeding the CPS were present in CMW21 and CMW23; however, these concentrations were in the total fraction only, indicating that the lead is the result of suspended particulates in the ground water rather than dissolved lead.

Monitoring wells CMW21 and CMW22 are both located within the area that is to be retained by the Army because of concerns related to the potential presence of UXO. CMW21 and CMW22 are both located downgradient of the lateral extent of ground water containing explosive compounds at concentrations exceeding the CPSs. No inorganic/metal constituent concentrations in these wells exceeded the CPSs except total lead in CMW21. Because the dissolved lead concentration is below the CPS, it is also likely that CMW21 and CMW22 are located downgradient of inorganic/metals concentrations exceeding the CPSs. These wells are located within the area to be retained by the Army; thus, CMW21 and CMW22 provide downgradient sentinel monitoring wells screened in the Sonsela Sandstone Member.

3.4.2.4 Entrada Sandstone Formation Ground Water

One well, KMW10 is screened within the Entrada Sandstone Formation (Figure 2-7). Ground water samples have been collected from this well during each of the four sampling events. The ground water samples were submitted to an off-site laboratory for chemical analysis.

3.4.2.4.1 Comparison to Background Levels

Table 3-31 lists the detected constituents in the well screened in the Entrada Sandstone Formation that exceeded the Current OB/OD Area ground water system background levels. No explosive compounds were

detected in the ground water samples collected from KMW10. Several inorganic constituents were detected at concentrations exceeding their respective background levels.

3.4.2.4.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to screening criteria. Table 3-32 lists those detected constituents that exceeded the screening criteria. The number of exceedances of the screening criteria was substantially less than those for background. Only one inorganic constituent, ammonia, was detected at concentrations exceeding the screening criteria, and as discussed above, this is because there is no screening level for this constituent. The concentration of ammonia detected in ground water from the Entrada Sandstone Formation would not pose an unacceptable risk if consumed.

3.4.2.4.3 Comparison to Closure Performance Standards

All sample constituents that exceeded screening criteria were compared to site-specific CPSs. Table 3-33 lists those detected constituents that exceeded the CPSs. Figure 3-2 (Appendix A) shows the location of the well within the Current OB/OD Area ground water system at which constituents were detected at concentrations exceeding the CPSs.

The only constituent detected in KMW10 that exceeded the CPSs was ammonia, and this is because there is no CPS for this constituent, as discussed above. The concentration of ammonia detected in ground water from the Entrada Sandstone Formation does not warrant further action.

3.5 SOIL BORING SAMPLES

Grab soil samples were collected during installation of monitoring well borings. In addition, grab soil samples were also collected from soil borings which were not completed as monitoring wells. All soil borings were completed away from areas with visible surface waste, and no subsurface waste was encountered during completion.

3.5.1 Closed OB/OD Area Ground Water System

Four borings were completed in the Closed OB/OD Area ground water system. Three of these (KMW09, KMW12, and KMW13) were completed as monitoring wells; one (KMW14) did not encounter free water and was abandoned by grouting it to the ground surface. A total of 17 soil samples were collected from the four borings and submitted for chemical analyses.

3.5.1.1 Comparison to Background Levels

Table 3-34 lists the detected constituents that exceeded the Closed OB/OD Area background levels. Explosives compounds were detected in one of the 17 soil samples. The majority of the detections and exceedances of background levels in soil samples were associated with metals. Between four and eight individual metal constituents were detected in samples at each of the four borings; of these metals, between 10 percent (%) and 100% were detected at concentrations greater than background.

3.5.1.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to the screening criteria. Table 3-35 lists those detected constituents in the Closed OB/OD Area ground water system that exceeded the screening criteria. Only a single constituent in one soil sample (iron in KMW09 collected at 35 feet bgs) exceeded the screening criteria which are based upon residential land-use RBLs.

3.5.1.3 Comparison to Closure Performance Standards

All sample constituents that exceeded RBLs were screened against sitespecific CPSs. Table 3-36 indicates that no constituent concentrations detected in soil samples collected within the Closed OB/OD Area ground water system exceeded the CPSs.

3.5.2 Current OB/OD Area Ground Water System

Thirty-three borings were completed in the Current OB/OD Area ground water system. Eighteen of these were completed as monitoring wells. A total of 170 soil samples were collected from the borings and submitted for chemical analyses.

3.5.2.1 Comparison to Background

Table 3-37 lists the detected constituents that exceeded the Current OB/OD Area background levels. Explosives compounds were detected in

approximately 6% of the soil samples. Metals were widely detected at levels exceeding the background levels.

3.5.2.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to the screening criteria. Table 3-38 lists those detected constituents that exceeded the screening criteria. The number of exceedances of the screening criteria was substantially less than those for background. Explosives were detected in two soil samples from one location (KB07) at concentrations greater than screening criteria. Three metal/inorganic constituents, arsenic, iron, and phosphorus, were widely detected in soil samples at concentrations greater than the screening criteria.

3.5.2.3 Comparison to Closure Performance Standards

All sample constituents that exceeded screening criteria were compared to site-specific CPSs. Table 3-39 lists those detected constituents that exceeded the CPSs. Figure 3-3 (Appendix A) shows the locations of the soil samples within the Current OB/OD Area ground water system at which constituents were detected at concentrations exceeding the CPSs. No explosives compounds were detected at concentrations exceeding the CPSs in the soil samples. Manganese was found to exceed the CPS in one sample from a single location (KB08 collected at 5 feet bgs). Phosphorus concentrations in 49 soil samples from 10 locations exceeded the CPS. The CPS for phosphorus was set at zero; exceedances of the CPS for phosphorus do not necessarily represent an unacceptable risk to human health under the selected future land use scenarios. Under realistic exposure conditions, it would be difficult for an on-site remediation worker or an off-site recreational user to be exposed to the highest detected constituent concentrations at the frequency and duration assumed by the exposure model.

3.6 SEDIMENT, SURFACE WATER, AND ALLUVIAL GROUND WATER SAMPLES

As described in Section 2, grab surface water and sediment samples were collected at ten locations in the arroyos draining the Closed OB/OD Area, and grab surface water and sediment samples were collected at five locations in the arroyo draining the Current OB/OD Area. Sediment samples only (no surface water) were collected at five additional locations in the arroyo draining the Current OB/OD Area.

Three monitoring wells located in the Current OB/OD Area are screened in the alluvium. The shallow depth of this ground water makes discharge to surface water likely; thus the chemical data collected for the CMW06, CMW20, and FW38 will be assessed with the Current OB/OD Area surface water. Each of these wells has been sampled during multiple events.

3.6.1 Closed OB/OD Area Ground Water System

3.6.1.1 Sediment

A total of ten sediment samples were collected in the Closed OB/OD Area and were submitted for chemical analysis.

3.6.1.1.1 Comparison to Background Levels

Table 3-40 lists the detected constituents that exceeded the Closed OB/OD Area background levels. No explosive compounds were detected in the sediment samples. Between one and nine individual inorganic constituents were detected above background levels in each of the sediment samples.

3.6.1.1.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to the screening criteria. Table 3-41 lists those constituents detected in sediment samples that exceeded the screening criteria. Between one and three individual inorganic constituents were detected at concentrations exceeding the screening criteria in each of the sediment samples, except one.

3.6.1.1.3 Comparison to Closure Performance Standards

All sample constituents that exceeded the screening criteria were compared to site-specific CPSs. Table 3-42 lists those constituents detected in sediment samples that exceeded the CPSs. Figure 3-3 (Appendix A) shows the locations of the sediment samples within the Closed OB/OD Area ground water system at which constituents were detected at concentrations exceeding the CPSs. Arsenic was detected in one sample at a concentration exceeding the CPS; however, similar levels of arsenic were not detected in the sediment samples located downgradient. Seven samples exceeded the CPS for phosphorus. The CPS for phosphorus was set at zero; exceedances of the CPS for phosphorus do not necessarily represent an unacceptable risk to human health under the selected future

land use scenarios. Under realistic exposure conditions, it would be difficult for an on-site remediation worker or an off-site recreational user to be exposed to the highest detected constituent concentrations at the frequency and duration assumed by the exposure model.

3.6.1.2 Surface Water

A total of ten surface water samples were collected in the Closed OB/OD Area and were submitted for chemical analysis.

Table 3-43 lists the detected constituents that exceeded the Closed OB/OD Area background levels. One explosive compound was detected in sample KSW02 (Figure 2-1, Appendix A) which is located downgradient of a residue/debris pile identified during CY 1996 (PMC, 1999). No explosive compounds were detected in any other surface water sample collected from the Closed OB/OD Area. There is no apparent relationship between the number of individual inorganic/metal constituents exceeding background levels and the proximity of the sample site to previously identified residue/debris piles. Although samples KSW05 and KSW09 are not located near identified waste areas, more inorganic/metal constituent concentrations exceeding background levels were detected in these samples than nearly all other surface water samples. Further, samples KSW07 and KSW08, collected immediately adjacent to residue/debris piles, had fewer inorganic/metal constituent concentrations exceeding background levels than nearly all other surface water samples. No constituents were present at concentrations exceeding background levels in the most downgradient sample, KSW10.

Surface water flows occur sporadically in the Closed OB/OD Area arroyo as short duration high velocity events. Under these conditions, the majority of surface water transport is via suspended and bedload movement of solid materials rather than as dissolved constituents. Because the contact time between the surface water and the sediment within the channel of the arroyo is very brief, there is a limited amount of time for the surface water to dissolve constituents. In addition, the volume of surface water can dilute the concentrations of constituents in the surface water. Based upon the analytical data from KSW10, it does not appear that dissolved contaminants are being transported out of the Closed OB/OD Area via surface water flow.

3.6.2 Current OB/OD Area Ground Water System

3.6.2.1 Sediment

A total of 15 sediment samples were collected from ten locations in the Current OB/OD Area and were submitted for chemical analysis.

3.6.2.1.1 Comparison to Background Levels

Table 3-44 lists the detected constituents that exceeded the Current OB/OD Area background levels. No explosive compounds were detected in the sediment samples. Between one and 12 individual inorganic constituents were detected above background levels in each of the sediment samples.

3.6.2.1.2 Comparison to Screening Criteria

All sample constituents that exceeded background levels were compared to the screening criteria. Table 3-45 lists those constituents detected in sediment samples that exceeded the screening criteria. One metal, iron, was detected at a concentration exceeding the screening criteria in a single sediment sample.

3.6.2.1.3 Comparison to Closure Performance Standards

All sample constituents that exceeded the screening criteria were compared to site-specific CPSs. Table 3-46 indicates that no constituent concentrations detected in sediment samples collected within the Current OB/OD Area ground water system exceeded the CPSs.

3.6.2.2 Surface Water and Alluvial Ground Water

Five surface water samples were collected in the Current OB/OD Area. Alluvial ground water samples were collected from three shallow monitoring wells during sampling events in 1996, 1997, 1998, and 1999. A total of 18 surface water and alluvial ground water samples were submitted to an off-site laboratory for chemical analysis.

Table 3-47 lists the detected constituents that exceeded the Current OB/OD Area background levels. Explosive compounds were detected in seven of the samples (Figure 2-1, Appendix A), all but one of which were collected from sites located immediately adjacent to residue/debris piles identified during CY 1996 (PMC, 1999). No explosives were detected in the most downgradient sample, CSW10. Between five and 17 individual

inorganic/metal constituents were detected at concentrations greater than background. The two samples with the greatest number of exceedances, CSW07 and CSW08, were collected from sites located immediately adjacent to residue/debris piles.

Surface water flows occur in the Current OB/OD Area arroyo very infrequently, if at all, as short duration high velocity events. No evidence of surface water flow in this area has been observed since October 1996. During high velocity surface water flow events, the majority of surface water transport is via suspended and bedload movement of solid materials rather than as dissolved constituents. Because the contact time between the surface water and the sediment within the channel of the arroyo is very brief, there is a limited amount of time for the surface water to dissolve constituents. In addition, the volume of surface water can dilute the concentrations of constituents in the surface water. Based upon the analytical data from CSW10, it does not appear that dissolved explosives are being transported out of the Current OB/OD Area via surface water flow.

Table 3-1
Summary of Selected Background Values
Ground Water
Closed and Current OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

Parameter	Units	Selected Background (Filtered Fraction)	Selected Background (Total Fraction)
Closed OB/OD Area		· · · ·	
2,4,6-Trinitrotoluene	µg/l	0	(
2,4-Dinitrotoluene	μg/l	Õ	(
2,6-Dinitrotoluene	μg/l	0	(
2-Amino-4,6-dinitrotoluene	μg/l	0	(
4-Amino-2,6-dinitrotoluene	μg/l	0	(
Aluminum	μg/l	55.9	22000
Ammonia nitrogen	μg/l	547	54:
Antimony	μg/l	2.16	2.0
Arsenic	μg/l	0	1.89
Barium	μg/l	44.4	94.4
Beryllium	μg/l	0	0.38
Cadmium	μg/l	0	0.15
Chromium	μg/I	0	25.7
Cobalt	μg/l	14.4	7.22
Copper	μg/l	0	7.0
Fluoride	μg/l	0	(
HMX	μg/l	0	(
Iron	μg/l	0	13600
Lead	μg/l	0	5.32
Manganese	μg/l	790	850
Mercury	µg/l	0	(
Nickel	μg/l	0	(

- - --- -----

٠

Table 3-1Summary of Selected Background ValuesGround WaterClosed and Current OB/OD AreasFort Wingate Depot ActivityGallup, New Mexico

Parameter	Units	Selected Background (Filtered Fraction)	Selected Background (Total Fraction)
Nitrite (as nitrite)	μg/l	0	0
Nitrite, nitrate - nonspecific (as nitrogen)	μg/l	Ő	174
Nitrobenzene	μg/l	ů 0	0
RDX	μg/l	0	0
Selenium	μg/l	2.67	2.91
Silver	μg/l	0	0.176
Thallium	μg/l	0.135	0.265
Vanadium	μg/l	0	36.2
Zinc	μg/l	37	55.4
Current OB/OD Area			
2,4,6-Trinitrotoluene	μg/l	0	0
2,4-Dinitrotoluene	μg/l	0	0
2,6-Dinitrotoluene	μg/l	0	0
2-Amino-4,6-dinitrotoluene	μg/l	0	0
4-Amino-2,6-dinitrotoluene	μg/l	0	0
Aluminum	μg/l	130	13000
Ammonia nitrogen	μg/l	27.9	27.2
Antimony	μg/l	0	1.97
Arsenic	μg/l	4.14	4.87
Barium	μg/l	58.8	122
Beryllium	μg/l	0	0
Cadmium	μg/l	0	0

1

Parameter	Units	Selected Background (Filtered Fraction)	Selected Background (Total Fraction)
Chromium	μg/l	3.02	7.18
Cobalt	μg/l	0	1.08
Copper	μg/l	2.32	13.4
Fluoride	μg/l	1160	0
HMX	μg/l	0	0
Iron	μg/l	48.7	6860
Lead	μg/l	0.73	2.39
Manganese	μg/l	14.1	194
Mercury	μg/l	0.133	0.0883
Nickel	μg/l	2.41	8.26
Nitrite (as nitrite)	μg/l	0	12.9
Nitrite, nitrate - nonspecific (as nitrogen)	μg/l	0	168
Nitrobenzene	μg/l	0	0
RDX	μg/l	0	0
Selenium	μg/l	9.84	11.4
Silver	μg/l	0	1.61
Thallium	μg/l	0	0
Vanadium	μg/l	58.1	65
Zinc	μg/l	8.75	16.4

Notes:

 $\mu g/l = micrograms$ per liter.

١

PMC

- ----

Table 3-2
Summary of Background Samples and Background Determination
Soils
Closed and Current OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

Parameter	Units	Mean	Maximum	Standard Deviation	Selected Background	Basis for Background
Closed OB/OD	Area					
Aluminum	μg/g	14,666	22,100	4,546	22,167	Normal: 95th percentile
Antimony	μg/g	-	-	-	0	All Less than DL
Arsenic	μg/g	7.69	8.85	0.98	9.30	Normal: 95th percentile
Barium	μg/g	93	156	40	159	Normal: 95th percentile
Beryllium	μg/g	0.67	1.01	0.21	1.02	Normal: 95th percentile
Cadmium	µg/g	-	-	-	0	18 Values less than DL; 2 outliers
Calcium	μg/g	13,157	36,300	11,529	37,204	Log Normal: 95th percentile
Chromium	μg/g	11.15	16.1	3.20	16.4	Normal: 95th percentile
Cobalt	μg/g	7.40	14.80	2.56	11.80	Log Normal: 95th percentile
Copper	μg/g	14.83	30.0	7.88	27.84	Normal: 95th percentile
Iron	µg/g	21,260	34,600	6,754	32,404	Normal: 95th percentile
Lead	μg/g	14.33	26.5	4.52	22.4	Log Normal: 95th percentile
Magnesium	μg/g	4,197	7,610	1,487	6,651	Normal: 95th percentile
Manganese	μg/g	226	463	101	392	Normal: 95th percentile
Mercury	μg/g	0.048	0.093	0.014	0.080	Log Normal: 95th percentile
Molybdenum	µg/g	-	-	-	0	18 Values less than DL; 2 reported below DL
Nickel	μg/g	11.59	20.1	3.67	18.4	Log Normal: 95th percentile
Phosphorus	μg/g	428	911	167	709	Log Normal: 95th percentile
Potassium	μg/g	2,818	3,990	694	3,963	Normal: 95th percentile
Selenium	μg/g	0.38	0.70	0.14	0.65	Log Normal: 95th percentile
Silver	μg/g	-	-	-	0	All Less than detection limit
Sodium	μg/g	95	137	22	136	Normal: 95th percentile (based on 10 detected values)
Thallium	μg/g	-	-	-	0	All Less than DL
Vanadium	μg/g	23.6	29.8	5.44	32.61	Normal: 95th percentile
Zinc	μg/g	50.5	78.0	16.20	77.3	Normal: 95th percentile

ı.

Table 3-2Summary of Background Samples and Background DeterminationSoilsClosed and Current OB/OD AreasFort Wingate Depot ActivityGallup, New Mexico

Parameter	Units	Mean	Maximum	Standard Deviation	Selected Background	Basis for Background
Current OB/OI	D Area					
Aluminum	µg/g	13,991	33,400	7,929	28,202	Log Normal: 95th percentile
Antimony	μg/g	-	-	-	0	All Less than detection limit
Arsenic	μg/g	1.70	3.23	0.60	2.70	Log Normal: 95th percentile
Barium	μg/g	187	606	140	431	Log Normal: 95th percentile
Beryllium	μg/g	0.59	1.85	0.34	1.15	Log Normal: 95th percentile
Cadmium	μg/g	-	-	-	0	19 Values less than detection limit; 1 outlier
Calcium	μg/g	9,469	23,400	6,904	26,081	Log Normal: 95th percentile
Chromium	μg/g	9.33	22.9	4.75	17.0	Log Normal: 95th percentile
Cobalt	µg∕g	3.67	8.75	1.83	6.50	Log Normal: 95th percentile
Copper	μg/g	7.80	33.0	7.27	18.9	Log Normal: 95th percentile
Iron	μg/g	10,874	21,300	3,978	17,647	Log Normal: 95th percentile
Lead	μg/g	7.37	13.2	2.80	12.5	Log Normal: 95th percentile
Magnesium	μg/g	3,663	9,410	2,210	7,550	Log Normal: 95th percentile
Manganese	µg/g	268	600	116	458	Log Normal: 95th percentile
Mercury	µg/g	0.048	0.057	0.006	0.060	Log Normal: 95th percentile
Molybdenum	μg/g	-	-	-	0	All Less than detection limit
Nickel	μg/g	7.67	18.0	3.76	14.3	Log Normal: 95th percentile
Potassium	μg/g	2,130	4,090	735	3,465	Log Normal: 95th percentile
Selenium	µg/g	0.26	0.39	0.06	0.36	Log Normal: 95th percentile
Silver	μg/g	-	-	-	0	All Less than detection limit
Sodium	μg/g	81	92	11	99	Normal: 95th percentile (based on 4 detected values
Thallium	μg/g	-	-	-	0	All Less than detection limit
Vanadium	μg/g	20.3	36.9	6.49	31.3	Log Normal: 95th percentile
Zinc	μg/g	18.6	31.8	5.95	29.2	Log Normal: 95th percentile

Notes:

DL = Detection limit $\mu g/g = micrograms per gram.$.

РМС

Table 3-3
Summary of Selected Background Values
Sediments
Closed and Current OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

Parameter	Units	Selected Background
Closed OB/OD Area		
1,3,5-Trinitrobenzene	μg/g	(
1,3-Dinitrobenzene	μg/g	(
2,4,6-Trinitrotoluene	μg/g	0
2,4-Dinitrotoluene	μg/g	C
2,6-Dinitrotoluene	μg/g	0
2-Amino-4,6-dinitrotoluene	μg/g	C
2-Nitrotoluene	μg/g	C
3-Nitrotoluene	μg/g	C
4-Amino-2,6-dinitrotoluene	μg/g	C
4-Nitrotoluene	μg/g	0
Aluminum	μg/g	14500
Antimony	μg/g	0
Arsenic	μg/g	9.94
Barium	μg/g	374
Beryllium	μg/g	1.08
Cadmium	µg∕g	0.265
Calcium	μg/g	16000
Chromium	μg/g	10.8
Cobalt	μg/g	9.92
Copper	μg/g	13.1
HMX	μg/g	0
fron	μg/g	48000
Lead	μg/g	16
Magnesium	μg/g	3010

,

Table 3-3Summary of Selected Background ValuesSedimentsClosed and Current OB/OD AreasFort Wingate Depot ActivityGallup, New Mexico

		Selected	
Parameter	Units	Background	
Manganese	μg/g	549	
Mercury	μg/g	0	
Molybdenum	μg/g	0	
Nickel	μg/g	12.3	
Nitrobenzene	μg/g	0	
Phosphorus	μg/g	284	
Potassium	μg/g	2470	
RDX	μg/g	0	
Selenium	μg/g	0	
Silver	μg/g	0	
Sodium	μg/g	0	
Tetryl	μg/g	0	
Thallium	μg/g	2.56	
Vanadium	μg/g	33.7	
Zinc	μg/g	87.7	
Current OB/OD Area			
1,3,5-Trinitrobenzene	μg/g	0	
1,3-Dinitrobenzene	μg/g	0	
2,4,6-Trinitrotoluene	μg/g	0	
2,4-Dinitrotoluene	μg/g	0	
2,6-Dinitrotoluene	μg/g	0	
2-Amino-4,6-dinitrotoluene	μg/g	0	
2-Nitrotoluene	μg/g	0	
3-Nitrotoluene	μg/g	0	

1

Table 3-3
Summary of Selected Background Values
Sediments
Closed and Current OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

	Sele Backg	Units	Parameter
0		μg/g	4-Amino-2,6-dinitrotoluene
0		με/s μg/g	4-Nitrotoluene
25400		μg/g	Aluminum
20400		μg/g	Antimony
3.82		μg/g	Arsenic
730		μg/g	Barium
0.775		μg/g	Beryllium
0.214		μg/g	Cadmium
50500		μg/g	Calcium
17.9		μg/g	Chromium
6.62		μg/g	Cobalt
28		μg/g	Copper
0		μg/g	HMX
16300		μg/g	Iron
18.5		μg/g	Lead
6060		μg/g	Magnesium
1010		μg/g	Manganese
0		μg/g	Mercury
0		μg/g	Molybdenum
12.5		μg/g	Nickel
0		μg/g	Nitrobenzene
0		μg/g	Phosphorus
6010		μg/g	Potassium
0		μg/g	RDX
0		µg/g	Selenium
0		μg/g	Silver
		μg/g μg/g	Selenium

Table 3-3Summary of Selected Background ValuesSedimentsClosed and Current OB/OD AreasFort Wingate Depot ActivityGallup, New Mexico

Parameter	Units	Selected Background
		Duckground
Sodium	μg/g	123
Tetryl	μg/g	C
Thallium	μg/g	C
Vanadium	μg/g	25.9
Zinc	μg/g	C

Notes:

 $\mu g/g = micrograms per gram.$

Table 3-4
Summary of Selected Background Values
Surface Water
Closed and Current OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

Parameter	Units	Selected Background
Closed OB/OD Area		
1,3,5-Trinitrobenzene	μg/l	0
1,3-Dinitrobenzene	μg/l	0
2,4,6-Trinitrotoluene	μg/l	0
2,4-Dinitrotoluene	μg/l	0
2,6-Dinitrotoluene	μg/l	0
2-Amino-4,6-dinitrotoluene	μg/l	0
2-Nitrotoluene	μg/l	0
3-Nitrotoluene	μg/l	0
4-Amino-2,6-dinitrotoluene	μg/l	0
4-Nitrotoluene	μg/l	0
Aluminum	μg/ì	171000
Antimony	μg/l	0
Arsenic	μg/l	130
Barium	μg/l	4100
Beryllium	μg/l	30.3
Cadmium	μg/l	4.53
Calcium	μg/l	94500
Chromium	μg/l	270
Cobalt	µg/l	230
Copper	μg/I	460
Hardness	μg/l	191000
HMX	μg/l	0
ron	μg/l	149000
Lead	μg/l	540

Table 3-4 Summary of Selected Background Values Surface Water Closed and Current OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

		Selected
Parameter	Units	Background
Magnesium	μg/l	48200
Manganese	μg/l	5200
Mercury	μg/l	0.537
Nickel	μg/l	250
Nitrite, nitrate - nonspecific (as nitrogen)	μg/l	0
Nitrobenzene	μg/l	0
Phosphorus	µg/l	2900
Potassium	μg/l	36900
RDX	μg/l	0
Salinity	μg/l	346000
Selenium	μg/l	22.1
Silver	μg/l	2.88
Sodium	μg/l	32500
Tetryl	μg/l	0
Thallium	μg/l	6.8
Total Dissolved Solids	μg/l	768000
Total Suspended Solids	μg/l	6880000
Vanadium	μg/l	630
Zinc	μg/l	1900
Current OB/OD Area		
1,3,5-Trinitrobenzene	μg/l	0
1,3-Dinitrobenzene	μg/l	0
2,4,6-Trinitrotoluene	μg/l	0
2,4-Dinitrotoluene	μg/l	0

Table 3-4
Summary of Selected Background Values
Surface Water
Closed and Current OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

Parameter	Units	Selected Background
2,6-Dinitrotoluene	μg/l	0
2-Amino-4,6-dinitrotoluene	μg/l	0
2-Nitrotoluene	μg/l	0
3-Nitrotoluene	μg/l	0
4-Amino-2,6-dinitrotoluene	μg/l	0
4-Nitrotoluene	μg/l	0
Aluminum	μg/l	29200
Antimony	μg/l	0
Arsenic	μg/l	2.63
Barium	μg/l	350
Beryllium	μg/l	1.61
Boron	μg/l	0
Cadmium	μg/1	0.309
Calcium	μg/l	39700
Chromium	μg/l	24.8
Cobalt	μg/l	9.21
Copper	μg/l	16.2
Hardness	μg/l	160000
HMX	μg/l	0
Iron	μg/l	19300
Lead	μg/l	13.8
Magnesium	μg/l	10100
Manganese	μg/l	510
Mercury	μg/l	0
Molybdenum	μg/l	0
Nickel	μg/l	17.5

.

Table 3-4 Summary of Selected Background Values Surface Water Closed and Current OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

Parameter	Units	Selected Background
Nitrite, nitrate - nonspecific (as nitrogen)	μg/l	0
Nitrobenzene	μg/l	0
Phosphorus	μg/l	Ő
Potassium	μg/l	9090
RDX	μg/l	0
Salinity	μg/l	66200
Selenium	μg/l	0
Silver	μg/l	0
Sodium	μg/l	833
Tetryl	μg/l	0
Thallium	μg/l	0.269
Total Dissolved Solids	μg/l	96000
Total Suspended Solids	μg/l	1510000
Vanadium	μg/l	45.1
Zinc	μg/l	51.5

Notes:

 $\mu g/l = micrograms$ per liter.

Table 3-5
Summary of Applicable Maximum Contaminant Levels (MCLs)
Ground Water
Closed and Current OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

_		Maximum Contaninant	_
Parameter	Units	Level (MCL)	Comment
Antimony	μg/l	6	
Arsenic	μg/l	50	
Barium	μg/l	2000	
Beryllium	μg/l	4	
Cadmium	μg/l	5	
Chromium	μg/l	100	
Copper	μg/l	1300	Action level regarding treatment technique
Fluoride	μg/l	4000	
Lead	μg/l	15	Action level regarding treatment technique
Mercury	μg/1	2	
Nickel	μg/l	100	
Nitrate (as nitrate)	μg/l	44000	MCL as Nitrate (MCL = 10000 as Nitrogen
Nitrite (as nitrite)	μg/l	3300	MCL as Nitrite (MCL = 1000 as Nitrogen)
Nitrite, nitrate - nonspecific (as nitrogen)	μg/l	10000	MCL as Nitrogen
Selenium	μg/l	50	-
Thallium	μg/l	2	

Notes:

 μ g/l = micrograms per liter.

•

Table 3-6 Summary of Region VI Human Health Medium Specific Screening Levels Ground Water Closed and Current OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

		Region VI Screening	
Parameter	Units	Levels	Comment
2,4,6-Trinitrotoluene	μg/l	2	
2,4-Dinitrotoluene	μg/l	0	EPA Region VI Criteria for dinitrotoluene mixture
2,6-Dinitrotoluene	μg/l	0	EPA Region VI Criteria for dinitrotoluene mixture
2-Amino-4,6-dinitrotoluene	μg/l	0	EPA Region VI Criteria for dinitrotoluene mixture
4-Amino-2,6-dinitrotoluene	μg/l	0	EPA Region VI Criteria for dinitrotoluene mixture
Aluminum	μg/l	37000	
Ammonia nitrogen	μg/l	174	Calculated using route-to-route extrapolation.
Cobalt	μg/l	2200	
HMX	μg/l	1800	
Iron	μg/l	11000	
Manganese	μg/l	1700	
Nitrobenzene	μg/l	3	
RDX	μg/l	1	
Silver	μg/l	180	
Vanadium	μg/l	260	
Zinc	μg/l	11000	

Notes:

 $\mu g/l = micrograms per liter.$

,

Table 3-7 EPA Region VI Risk-Based Residential Soil Screening Levels Closed and Current OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

	Screening Level	
Parameter	(µg/g)	Comments
1,3,5-Trinitrobenzene	1800	
1,3-Dinitrobenzene	6.1	
2,4,6-Trinitrotoluene	16	
2,4-Dinitrotoluene	0.71	EPA Region VI Criteria for dinitrotoluene mixture
2,6-Dinitrotoluene	0.71	EPA Region VI Criteria for dinitrotoluene mixture
2-Amino-4,6-dinitrotoluene	0.71	EPA Region VI Criteria for dinitrotoluene mixture
2-Nitrotoluene	610	
3-Nitrotoluene	610	
4-Amino-2,6-dinitrotoluene	0.71	EPA Region VI Criteria for dinitrotoluene mixture
4-Nitrotoluene	610	
HMX	3000	
Nitrobenzene	17	
RDX	4.4	
Tetryl	610	
Aluminum	78000	
Antimony	31	
Arsenic	0.39	
Barium	5400	
Beryllium	150	
Cadmium	39	
Calcium	0	No EPA Region VI Criteria; set to 0.0 for this assessment
Chromium	210	
Cobalt	3400	
Copper	2900	
Iron	23000	
Lead	400	
Magnesium	0	No EPA Region VI Criteria; set to 0.0 for this assessment
Manganese	3200	No EFFI Region VI Chiena, set to 0.0 for and assessment
Marganese	23	
Molybdenum	390	
Nickel	1600	
Potassium	0	No EPA Region VI Criteria; set to 0.0 for this assessment
Selenium	390	The second of citicity set to 0.0 for this assessment
Silver	390	
Sodium	0	No EPA Region VI Criteria; set to 0.0 for this assessment
Thallium	6.3	to him region of citienta, set to 0.0 for this assessment
Vanadium	550	
Zinc	23000	
	25000	
Amosite asbestos	0	No EPA Region VI Criteria; set to 0.0 for this assessment
Phosphorus	0	No EPA Region VI Criteria; set to 0.0 for this assessment
Total petroleum		
hydrocarbons, diesel fraction	0	No EPA Pagion VI Critoria, act to 0.0 for this assessment
Try arocarbons, aleser fraction	0	No EPA Region VI Criteria; set to 0.0 for this assessment

Table 3-8
Summary of Closure Performance Standards
Ground Water
Closed and Current OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

	TT	Closure Performance							
Parameter	Units	Standard	Comment						
2,4,6-Trinitrotoluene	µg/l	221	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁻⁴						
2,4-Dinitrotoluene	μg/l	9.9	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁻⁴						
2,6-Dinitrotoluene	μg/l	9.9	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁻⁴						
2-Amino-4,6-dinitrotoluene	μg/l	9.9	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁻⁴						
4-Amino-2,6-dinitrotoluene	μg/l	9.9	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁻⁴						
Aluminum	μg/l	3700000	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁻⁴						
Ammonia nitrogen	μg/l	174	Noncarcinogenic, THQ=1						
Antimony	μg/l	6	MCL						
Arsenic	μg/l	50	MCL						
Barium	μg/l	2000	MCL						
Beryllium	μg/l	4	MCL						
Cadmium	μg/l	5	MCL						
Chromium	μg/l	100	MCL						
Cobalt	μg/l	2200	Noncarcinogenic, THQ=1						
Copper	μg/l	1300	MCL						
Fluoride	μg/l	4000	MCL						
HMX	μg/l	1800	Noncarcinogenic, THQ=1						
Iron	μg/l	1100000	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁻⁴						
Lead	μg/l	15	MCL						
Manganese	μg/l	170000	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁴						
Mercury	μg/l	2	MCL						
Nickel	μg/l	100	MCL						
Nitrate (as nitrate)	μg/l	44000	MCL						
Nitrite (as nitrite)	μg/l	3300	MCL						

Table 3-8Summary of Closure Performance StandardsGround WaterClosed and Current OB/OD AreasFort Wingate Depot ActivityGallup, New Mexico

Parameter	Units	Closure Performance Standard	Comment
	Units	Stanuaru	Comment
Nitrite, nitrate - nonspecific (as nitrogen)	μg/l	10000	MCL
Nitrobenzene	μg/l	3.4	Noncarcinogenic, THQ=1
RDX	μg/l	61	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁴
Selenium	μg/l	50	MCL
Silver	µg/l	18000	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁻⁴
Thallium	μg/l	2	MCL
Vanadium	μg/l	260	Noncarcinogenic, THQ=1
Zinc	μg/l	1100000	Region VI Human Health Medium Specific Screening Levels, adjusted to 10 ⁴

Notes:

 $\mu g/l = micrograms$ per liter.

,

Table 3-9 Soil Exposure Scenario Assumptions Fort Wingate Depot Activity Gallup, New Mexico

		Worker	Off-Site Recreation
EF	Exposure Frequency (days/year) (1,2)	39.6	5
ED	Exposure Duration (years)	1	30
SA	Surface Area (cm^2) (3)	820	NA
IRsoil	Ingestion Rate for Soil (mg/day)	480	NA
IRair	Inhalation Rate for Air (m ³ /day)	20	20

Notes:

NA = Not applicable

 $cm^2 = square centimeter$

mg/day = milligrams per day

 $m^3/day = cubic meters per day$

(1) The worker value represents 8 hours per day for 120 days.

(2) The recreational value represents 4 hours per day for 30 days.

(3) This value represents the 50th percentile area for the hands of an adult male.

ESPS.05-FWDA OB/OD PHASE IB.1-00805.81-12/21/99

Table 3-10 Closure Performance Standards For Soil Worker Exposure Fort Wingate Depot Activity Gallup, New Mexico

Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d))	Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d) ⁻¹]	inhalation CF (mg/kg/d)		Carcinogenic Classification	Noncarcinogenic Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	Worker Cleanup Level (mg/kg)
НМХ	HMX	5.00E-02		5.00E-02	**	NA		NA			4.37E+04	NA	4.37E+04
RDX	RDX	3.00E-03		3.00E-03	**	1.10E-01		1.10E-01	**	С	2.62E+03	5.56E+02	5.56E+02
1,3,5-Trinitrobenzene	135TNB	3.00E-02	а	3.00E-02	**	NA		NA			2.62E+04	NA	2.62E+04
1,3-Dinitrobenzene	13DNB	1.00E-04	а	1.00E-04	**	ND	а	ND	**	D	8.74E+01	NA	8.74E+01
Nitrobenzene	NB	5.00E-04	а	5.70E-04	b	NA		NA			4.39E+02	NA	4.39E+02
N-methyl-N,2,4,6-tetranitroaniline		1.00E-02	b	1.00E-02	**	NA		NA			8.74E+03	NA	8.74E+03
2,4,6-Trinitrotoluene	246TNT	5.00E-04	а	5.00E-04	**	3.00E-02	а	3.00E-02	**	С	4.37E+02	2.04E+03	4.37E+02
2,4-Dinitrotoluene	24DNT	2.00E-03	а	2.00E-03	**	6.80E-01	a1	6.80E-01	**		1.75E+03	9.00E+01	9.00E+01
2,6-Dinitrotoluene	26DNT	1.00E-03	ь	1.00E-03	**	6.80E-01	a1	6.80E-01	**	B2	8.74E+02	9.00E+01	9.00E+01
2-Nitrotoluene		1.00E-02	ь	1.00E-02	**	NA		NA			8.74E+03	NA	8.74E+03
4-Nitrotoluene		1.00E-02	b	1.00E-02	**	NA		NA			8.74E+03	NA	8.74E+03
3-Nitrotoluene		1.00E-02	b	1.00E-02	**	NA		NA			8.74E+03	NA	8.74E+03
2-Amino-4,6-DNT		NA		NA		6.80E-01	a1	6.80E-01	**		NA	9.00E+01	9.00E+01
4-Amino-2,6-DNT		NA		NA		6.80E-01	a1	6.80E-01	**		NA	9.00E+01	9.00E+01
Aluminum	AL	1.00E+00	с	1.00E+00	**	NA		NA			1.29E+06	NA	1.29E+06
Ammonia nitrogen		NA		NA		NA		NA			NA	NA	NA
Amosite asbestos		NA		NA		NA		2.30E-01 ^		Α	NA	NA	NA
Antimony	SB	4.00E-04	а	4.00E-04	**	ND	а	ND	**		5.15E+02	NA	5.15E+02
Arsenic	AS	3.00E-04	а	3.00E-04	**	1.50E+00	а	1.50E+01	a2	Α	3.86E+02	4.42E+01	4.42E+01
Barium	BA	7.00E-02	а	1.40E-04	Ъ	ND	а	ND	а		4.31E+03	NA	4.31E+03
Beryllium	BE	2.00E-03	а	5.70E-06	а	NA		8.40E+00	а	B2	1.72E+02	2.69E+02	1.72E+02
Boron		9.00E-02	а	5.70E-03	b	NA		NA			7.29E+04	NA	7.29E+04
Cadmium	CD	1.00E-03	aЗ	1.00E-03	**	NA	а	6.30E+00	а	B1	1.29E+03	3.58E+02	3.58E+02
Calcium	CA	NA		NA		NA		NA			NA	NA	NA
Chloride		NA		NA		NA		NA			NA	NA	NA
Chromium	CR	5.00E-03	a4	5.00E-03	**	NA	a	4.20E+01	a4	Α	6.44E+03	5.38E+01	5.38E+01
Cobalt	CO	6.00E-02	x	5.70E-06	x	ND	a	ND	а		1.83E+02	NA	1.83E+02
Copper	CU	3.71E-02	Ъ	3.71E-02	**	NA		NA		D	4.78E+04	NA	4.78E+04
Fluoride		6.00E-02	а	6.00E-02	**	NA		NA			7.72E+04	NA	7.72E+04
Iron	FE	3.00E-01	с	3.00E-01	**	NA		NA			3.86E+05	NA	3.86E+05
Lead	PB	ND	а	ND	**	NA	а	NA	а	B2	NA	NA	NA
Lithium		2.00E-02	x	2.00E-02	**	NA		NA			2.57E+04	NA	2.57E+04
Magnesium	MG	NA		NA	**	NA		NA			NA	NA	NA
Manganese	MN	1.40E-01	a3	1.43E-05	а	NA		NA		D	4.60E+02	NA	4.60E+02
Mercury	HG	3.00E-04	b	8.60E-05	ь	NA		NA		D	3.51E+02	NA	3.51E+02

,

Table 3-10 Closure Performance Standards For Soil Worker Exposure Fort Wingate Depot Activity Gallup, New Mexico

Constituent		Oral RfD (mg/kg/d)	I	Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d) ⁻¹	1	Inhalation CP (mg/kg/d) ⁻¹		Carcinogenic Classification	Noncarcinogenic Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	Worker Cleanup Level (mg/kg)
Molybdenum		5.00E-03	i	5.00E-03	**	NA		NA			6.44E+03	NA	6.44E+03
Nickel	NI	2.00E-02	a5	2.00E-02	**	NA		1.68E+00	aб	Α	2.57E+04	1.34E+03	1.34E+03
Nitrite		NA		NA		NA		NA			NA	NA	NA
Nitrite, nitrate		NA		NA		NA		NA			NA	NA	NA
Phosphate		NA		NA		NA		NA			NA	NA	NA
Phosphorous		NA		NA		NA		NA			NA	NA	NA
Potassium	K	NA		NA	**	NA		NA			NA	NA	NA
Selenium	SE	5.00E-03	а	5.00E-03	**	ND	a	ND	a	D	6.44E+03	NA	6.44E+03
Silver	AG	5.00E-03	а	5.00E-03	**	NA		NA		D	6.44E+03	NA	6.44E+03
Sodium	NA	NA		NA	**	NA		NA			NA	NA	NA
Sulfate		NA		NA		NA		NA			NA	NA	NA
Thallium	TL	8.00E-05	а	8.00E-05	**	ND	а	ND	a	D	1.03E+02	NA	1.03E+02
Total dissolved solids		NA		NA		NA		NA			NA	NA	NA
Total petroleum hydrocarbons, diesel fraction		NA		NA		NA		NA			NA	NA	NA
Vanadium	V	7.00E-03	b	7.00E-03	**	NA		NA			9.01E+03	NA	9.01E+03
Zinc	ZN	3.00E-01	a	3.00E-01	**	ND	a	ND	а	D	3.86E+05	NA	3.86E+05

Notes:

CPF - Carcinogen Potency Factor RfD - Reference dose mg/kg - milligram per kilogram

a - IRIS Database accessed 6/99

b - HEAST FY1997

x - Withdrawn data

^ - Asbestos toxicity value represents an inhalation unit risk in units of PCM fibers/ml

a1 The CPF for this constituent is listed as the Dinitrotoluene mixture 2,4-/2,6- on IRIS.

a2 An absorption factor of 30% is applicable.

a3 This value is for food consumption.

a4 This value is for hexavalent chromium.

a5 This value is for soluble nickel salts.

a6 The CPF for nickel subsulfide was used.

(i) Study based on the inhalation study.

(o) Study based on oral study.

** This value is based the oral toxicity value for the same constituent.

mg/kg/d - milligram per kilogram per day NA - Not Available ND - No Data

РМС

Table 3-11 Closure Performance Standards for Soil Off-Site Recreational User Fort Wingate Depot Activity Gallup, New Mexico

Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d)		Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d) ⁻¹	1	Inhalation CPF (mg/kg/d) ⁻	1	Carcinogenic Classification	Noncarcinogenic Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	Off-Site Recreational Cleanup Level (mg/kg)
НМХ	НМХ	5.00E-02		5.00E-02	**	NA		NA			1.68E+10	NA	1.68E+10
RDX	RDX	3.00E-03		3.00E-03	**	1.10E-01		1.10E-01	44	С	1.01E+09	7.13E+06	7.13E+06
1,3,5-Trinitrobenzene	135TNB	3.00E-02	a	3.00E-02	**	NA		NA			1.01E+10	NA	1.01E+10
1,3-Dinitrobenzene	13DNB	1.00E-04	a	1.00E-04	**	ND	а	ND	**	D	3.36E+07	NA	3.36E+07
Nitrobenzene	NB	5.00E-04	а	5.70E-04	b	NA		NA			1.92E+08	NA	1.92E+08
N-methyl-N,2,4,6-tetranitroaniline		1.00E-02	b	1.00E-02	**	NA		NA			3.36E+09	NA	3.36E+09
2,4,6-Trinitrotoluene	246TNT	5.00E-04	a	5.00E-04	**	3.00E-02	a	3.00E-02	**	С	1.68E+08	2.62E+07	2.62E+07
2,4-Dinitrotoluene	24DNT	2.00E-03	а	2.00E-03	**	6.80E-01	al	6.80E-01	**		6.72E+08	1.15E+06	1.15E+06
2,6-Dinitrotoluene	26DNT	1.00E-03	Ъ	1.00E-03	**	6.80E-01	al	6.80E-01	**	B2	3.36E+08	1.15E+06	1.15E+06
2-Nitrotoluene		1.00E-02	b	1.00E-02	**	NA		NA			3.36E+09	NA	3.36E+09
4-Nitrotoluene		1.00E-02	Ь	1.00E-02	**	NA		NA			3.36E+09	NA	3.36E+09
3-Nitrotoluene		1.00E-02	Ь	1.00E-02	**	NA		NA			3.36E+09	NA	3.36E+09
2-Amino-4,6-DNT		NA		NA		6.80E-01	a1	6.80E-01	**		NA	1.15E+06	1.15E+06
4-Amino-2,6-DNT		NA		NA		6.80E-01	a1	6.80E-01	**		NA	1.15E+06	1.15E+06
Aluminum	AL	1.00E+00	с	1.00E+00	**	NA		NA			3.36E+11	NA	3.36E+11
Ammonia nitrogen		NA		NA		NA		NA			NA	NA	NA
Amosite asbestos		NA		NA		NA		2.30E-01 ^		Α	NA	3.41E+06	3.41E+06
Antimony	SB	4.00E-04	а	4.00E-04	**	ND	a	ND	**		1.34E+08	NA	1.34E+08
Arsenic	AS	3.00E-04	a	3.00E-04	**	1.50E+00	а	1.50E+01	a2	Α	1.01E+08	5.23E+04	5.23E+04
Barium	BA	7.00E-02	a	1.40E-04	b	ND	a	ND	a		4.71E+07	NA	4.71E+07
Beryllium	BE	2.00E-03	а	5.70E-06	а	NA		8.40E+00	а	B2	1.92E+06	9.34E+04	9.34E+04
Boron		9.00E-02	a	5.70E-03	b	NA		NA			1.92E+09	NA	1.92E+09
Cadmium	CD	1.00E-03	a 3	1.00E-03	**	NA	a	6.30E+00	а	B1	3.36E+08	1.25E+05	1.25E+05
Calcium	CA	NA		NA		NA		NA			NA	NA	NA
Chloride		NA		NA		NA		NA			NA	NA	NA
Chromium	CR	5.00E-03	a4	5.00E-03	**	NA	а	4.20E+01	a4	Α	1.68E+09	1.87E+04	1.87E+04
Cobalt	СО	6.00E-02	х	5.70E-06	x	ND	а	ND	а		1.92E+06	NA	1.92E+06
Copper	CU	3.71E-02	b	3.71E-02	**	NA		NA		D	1.25E+10	NA	1.25E+10
Fluoride		6.00E-02	а	6.00E-02	**	NA		NA			2.02E+10	NA	2.02E+10
Iron	FE	3.00E-01	с	3.00E-01	**	NA		NA			1.01E+11	NA	1.01E+11
Lead	PB	ND	a	ND	**	NA	a	NA	а	B2	NA	NA	NA
Lithium		2.00E-02	x	2.00E-02	**	NA		NA			6.72E+09	NA	6.72E+09
Magnesium	MG	NA		NA	**	NA		NA			NA	NA	NA
Manganese	MN	1.40E-01	a3	1.43E-05	а	NA		NA		D	4.81E+06	NA	4.81E+06
Mercury	HG	3.00E-04	b	8.60E-05	b	NA		NA		D	2.89E+07	NA	2.89E+07
Molybdenum		5.00E-03	i	5.00E-03	**	NA		NA			1.68E+09	NA	1.68E+09
Nickel	NI	2.00E-02	a5	2.00E-02	**	NA		1.68E+00	a6	Α	6.72E+09	4.67E+05	4.67E+05
Nitrite		NA		NA		NA		NA			NA	NA	NA

.

PMC

e. •

Table 3-11 Closure Performance Standards for Soil Off-Site Recreational User Fort Wingate Depot Activity Gallup, New Mexico

Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d)		Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d) ⁻¹		Inhalation CPF (mg/kg/d) ⁻¹		Carcinogenic Classification	Noncarcinogenic Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	Off-Site Recreational Cleanup Level (mg/kg)
Nitrite, nitrate		NA		NA		NA		NA			NA	NA	NA
Phosphate		NA		NA		NA		NA			NA	NA	NA
Phosphorous		NA		NA		NA		NA			NA	NA	NA
Potassium	к	NA		NA	**	NA		NA			NA	NA	NA
Selenium	SE	5.00E-03	а	5.00E-03	**	ND	а	ND	а	D	1.68E+09	NA	1.68E+09
Silver	AG	5.00E-03	а	5.00E-03	**	NA		NA		D	1.68E+09	NA	1.68E+09
Sodium	NA	NA		NA	**	NA		NA			NA	NA	NA
Sulfate		NA		NA		NA		NA			NA	NA	NA
Thallium	TL	8.00E-05	а	8.00E-05	**	ND	a	ND	а	D	2.69E+07	NA	2.69E+07
Total dissolved solids		NA		NA		NA		NA			NA	NA	NA
Total petroleum hydrocarbons, diesel fraction		NA		NA		NA		NA			NA	NA	NA
Vanadium	v	7.00E-03	b	7.00E-03	**	NA		NA			2.35E+09	NA	2.35E+09
Zinc	ZN	3.00E-01	a	3.00E-01	**	ND	а	ND	а	D	1.01E+11	NA	1.01E+11

Notes:

CPF - Carcinogen Potency Factor RfD - Reference dose mg/kg - milligram per kilogram mg/kg/d - milligram per kilogram per day NA - Not Available ND - No Data

a - IRIS Database accessed 6/99

b - HEAST FY1997

x - Withdrawn data

^ - Asbestos toxicity value represents an inhalation unit risk in units of PCM fibers/ml

a1 The CPF for this constituent is listed as the Dinitrotoluene mixture 2,4-/2,6- on IRIS.

a2 An absorption factor of 30% is applicable.

a3 This value is for food consumption.

a4 This value is for hexavalent chromium.

a5 This value is for soluble nickel salts.

a6 The CPF for nickel subsulfide was used.

(i) Study based on the inhalation study.

(o) Study based on oral study.

** This value is based the oral toxicity value for the same constituent.

Table 3-12
October 1996 Monitoring Well Purging and Field Sampling Data
OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

Well &	Sample	Sample	Initial Depth to Water	Calculated Purge Volume	Total Volume Purged	Final	Final Conductivity	-	•	Final Eh	Company
Sample ID	Date	Method	(ft bgs)	(gal)	(gal)	рН	(µmhos/cm)	(Celsius)	(NTU)	(mV)	Comments
URRENT OB/	OD AREA										
CMW02	10/22/96	2" pump	13.25	13.5	35	5.6	500	10	101	170	
CMW04	10/22/96	2" pump	28.93	34.6	155	6.4	2,500	10	>200	100	
CMW06	10/28/96	1.5" bailer	17.11	1.3	2.2	8	1,400	15	>200	-110	
CMW07	10/19/96	2" pump	38.46	21.4	65	7.6	1,400	16	>200	140	
CMW10	11/7/96	1.5" bailer	72.72	0.5	0.4	6.8	11,500	15	>200	-60	purged dry 10/28
FW38	10/28-29/96	1.5" bailer	6.13	4.0	1.75	5.8	1,300	15	>200	-10	purged dry 10/24 - 10/28
CMW14	10/29/96	2" pump	91.20	5.1	5	11	6,500	15	>200	170	purged dry 10/28
CMW16	10/22/96	2" pump	21.24	10.4	53	6	650	10	60	130	purged 10/21
CMW17	10/18/96	2" pump	22.75	22.0	111	7.8	800	16	>200	160	purged dry 10/18, 10/19
CMW18	10/19/96	2" pump	37.99	14.5	73	8.5	700	16	161	180	purged dry 10/18
CMW19	10/29/96	2" pump	30.76	15.8	10	8.1	1,100	15	>200	70	purged dry 10/28
CMW20	10/29/96	1.5" bailer	6.22	1.0	5.5	6.8	610	16.5	>200	-110	purged dry 10/28
LOSED OB/O	D AREA										
KMW09	10/29/96	2" pump	48.42	13.5	16	10.4	2,600	15	158	0	purged dry 10/28
KMW10	10/29/96	1.5" bailer	167.16	3.4	5.5	7.2	700	15	>200	170	purged dry 10/28
KMW11	10/24/96	2" pump	32.95	20.8	50	7.5	700	15	>200	190	purged dry 10/23

Notes:

1.00

ft bgs = Feet Below Ground Surface gal = Gallons mV = Millivolts

NTU = Nephelometric Turbidity Units µmhos/cm = micromhos per centimeter

Table 3-13 February 1997 Monitoring Well Purging and Field Sampling Data OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

Well & Sample ID	Sample Date	Sample Method	Intitial Depth to Water (ft bgs)	Calculated Purge Volume (gal)	Total Volume Purged (gal)	Final pH	Final Conductivity (µmhos/cm)	Final Temperature (Celsius)	Fianl Turbidity (NTU)	Final Eh (mV)	Comments
						f		·····			
CURRENT OB/											
CMW02	2/10/97	2" pump	12.98	12.0	25	6.9	500	10	>200	5.6	purged dry 02/06, 02/08
CMW04	2/10/97	2" pump	29.86	33.7	170	7.2	2,800	10.4	2.94	-17	purged dry 02/06
CMW06	2/10/97	1.5" bailer	17.67	2.2	2.5	7.25	1,600	9.8	96	68.7	purged dry 02/07, 02/08
CMW07	2/10/97	2" pump	38.28	24.4	85	7.1	1,250	9.2	82	-22	purged dry 02/06
CMW10	2/11/97	1.5" bailer	66.67	5.9	8	11.8	9,500	11.4	112.9	-230	purged dry 02/07, 02/08
FW38	2/10/97	1.5" bailer	7.23	6.8	2	7.1	1,500	7.8	115	73.7	purged dry 02/07, 02/08, 02/10
CMW14	2/11/97	2" pump/	38.15	18.4	22	11.3	10,000	12	> 200	-165	purged dry 02/07, 02/08
		1.5" bailer									
CMW16	2/10/97	2" pump	18.39	11.1	58	7.2	750	10.8	> 200	34.2	purged dry 02/10, 02/11
CMW17	2/11/97	2" pump	22.74	21.2	45	7.6	800	10.9	88	-38.1	purged dry 02/07, 02/08, 02/11
CMW18	2/11/97	2" pump	34.09	17.9	120	7.5	650	9.6	85.6	39	purged dry 02/07, 02/11
CMW19	2/10/97	2" pump	22.05	17.2	16	8.1	1,500	9.8	> 200	9.8	purged dry 02/06 - 02/08, 02/10
CMW20	2/11/97	1.5" bailer	4.74	3.4	17	6.35	700	6.9	>200	122	purged dry 02/07, 02/11
CLOSED OB/OI	D AREA										
KMW09	2/10/97	2" pump	41.58	13.9	25	10.5	2,500	10.6	138	-120	purged dry 02/07, 02/08, 02/10
KMW10	2/11/97	1.5" bailer	166.69	3.9	4.75	7.66	700	10.9	184	47.2	purged dry 02/07, 02/11
KMW11	2/11/97	2" pump	32.79	20.1	65	8.6	800	10.5	>200	-12.8	purged dry 02/07, 02/08, 02/11

Notes:

ft bgs = Feet below ground surface gal = Gallons mV = Millivolts NTU = Nephelometric Turbidity Units μmhos/cm = micromhos per centimeter 1

Table 3-14
October 1998 Monitoring Well Purging and Field Sampling Data
OB/OD Areas
Fort Wingate Depot Activity
Gallup, New Mexico

			Initial Depth to	Calculated Purge	Total Volume		Final	Final	Final	Final	Dissolved	Unfiltered	Ferrous Iron	Ferric Iron*	
Well &	Sample	Sample	Water	Volume	Purged	Final	Conductivity			Eh	Oxygen	Total Iron	(Fe ²⁺)	(Fe ³⁺)	
Sample ID	Date	Method	(ft bgs)	(gal)	(gal)	pH	(µmhos/cm)	(Celsius)	(NTU)	(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Comments
									()	(/					
CURRENT O	B/OD ARE/	1													
CMW02	10/19/98	1.6" bailer	9.74	70.4	25	7.77	0.703	11.3	172	267.1	5.4	0	0	0	purged dry two times on 10/19
CMW04	10/21/98	1.6" bailer	25.92	175.3	190	8.12	4.58	12	>999	227.3	5.0	0	0	0	
CMW06	10/20/98	1.6" bailer	19.61	6.1	0.5	6.96	2.42	13.4	445	-88.8	NT	NT	NT	NT	sampled only one liter for
															Explosives (not enough water)
CMW07	10/20/98	1.6" bailer	39.06	106.4	110	7.83	1.65	12.9	171	208.6	1.6	0	0	0	
CMW10	10/20/98	1.6" bailer	17.30	129.5	27	9.94	4.37	13.2	52	46.5	8.0	0.82	0	0.82	purged dry 10/19, 10/20
FW38	NS	NS	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
CMW14	10/20/98	1.6" bailer	26.84	104.6	22.5	12.06	14.4	13	37	-24.9	6.2	NT	0	NT	purged dry 10/19, 10/20
CMW16	10/21/98	1.6" bailer	19.84	57.4	58	7.72	0.95	10.8	17	ND	3.2	0.08	0	0.08	
CMW17	10/22/98	1.6" bailer	19.62	112.2	51	8.67	1.11	10.6	>999	213.1	6.8	0.18	0	0.18	purged dry three times from 10/19 - 10/22
CMW18	10/20/98	1.6" bailer	36.80	79.3	80	7.4	0.94	12	28	164.8	6.5	NT	0	NT	
CMW19	10/22/98	1.6" bailer	19.27	88.0	20	8.14	2.9	10.7	>999	183	7.4	0.06	0	0.06	purged dry three times
CMW20	NS	NS	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
CMW21	10/23/98	1.6" bailer	24.46	71.7	12	9.21	0.903	11.8	>999	166	5.2	0.06	0	0.06	purged dry two times
CMW22	10/21/98	1.6" bailer	116.25	11.4	1.5	9.48	0.877	11.1	236	177.7	1.0	0.16	0	0.16	not enough water to get complete suite
CMW23	10/23/98	1.6" bailer	95.51	29.5	6.25	9.93	3.18	12.3	465	151.5	6.4	0.34	0	0.34	purged dry two times
CMW24	10/29/98	1.6" bailer	65.83	255.9	104	8.44	2.77	15.5	200	66.8	4.2	0.14	0	0.14	
CMW25	10/24/98	1.6" bailer	37.02	103.0	28	8.65	1.08	13.5	>999	-221.6	6.6	0.38	0	0.38	
CLOSED OB/	OD AREA														
KMW09	10/23/98	1.6" bailer	40.78	70.0	20.5	9.86	3.81	10.8	ND	71.7	6.8	0.75	0	0.75	purged dry 10/21, 10/22
KMW10	10/21/98	1.6" bailer	166.83	18.2	5.75	7.71	0.967	12.7	ND	184.6	7.2	0.26	0.2	0.06	purged dry 10/19
KMW11	10/24/98	1.6" bailer	31.62	105.0	110	8.8	1.14	13.1	ND	ND	3.6	0.08	0	0.08	purged dry 10/21, 10/22
KMW12	10/26/98	1.6" bailer	53.48	97.6	25	7.8	4.11	11.1	451	158.1	5.6	0.12	0	0.12	purged dry 10/23, 10/24, 10/26
KMW13	10/22/98	1.6" bailer	44.43	41.5	7.5	6.58	4.9	11.3	80	242.4	2.2	0.1	0	0.1	

Notes:

ft bgs = Feet below ground surface gal = Gallons mV = Millivolts NS = Not sampled because of insufficient water NTU = Nephelometric Turbidity Units μmhos/cm = micromhos per centimeter mg/L = milligrams per liter *Ferric Iron = (Total Iron) - (Ferrous Iron)

NT = Not tested with field test kit or meter

÷

Page 1 of 1

Table 3-15 January 1999 Monitoring Well Purging and Field Sampling Data OB/OD Areas Fort Wingate Depot Activity Gallup, New Mexico

Well &	Sample	Sample	Initial Depth to Water	Calculated Purge Volume	Total Volume Purged	Final	Final Conductivity	Final Temperature	Final Turbidity	Final Eh	Dissolved Oxygen	Unfiltered Total Iron	Ferrous Iron (Fe ²⁺)	Ferric Iron* (Fe ³⁺)	
Sample ID	Date	Method	(ft bgs)	(gal)	(gal)	pH	(µmhos/cm)	(Celsius)	(NTU)	(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Comments
CURRENT O															
CMW02	B/OD AREA 1/21/99	1.6" bailer	9,14	70.9	25	8.19	0.739	9.1	85	162.4	4.23	0.03	0	0.03	purged dry 1/20, 1/21
CMW02 CMW04	1/21/99	1.6" bailer		171.5	175	8.41	3.68	11.6	0	-45.6	3.20	0.03	0	0.03	purged dry 1/20, 1/21
CMW04 CMW06	1/25/99	1.6" bailer	19.31	2.6	0.5	7.06	2.57	10.0	411	48.6	3.20 NT	NT	NT	0.09 NT	manual day 102-102-48 au Gast autor 18
CMW00	1123199	1.0 Danei	19.31	2.0	0.5	7.00	2.31	10.0	411	40.0	N1	NI	NI		purged dry 1/22, 1/23; 48 oz first purge, 18 oz second; partial suite submitted (explosives, tota and dissolved TAL metals, & TSS/IDS)
CMW07	1/21/99	1.6" bailer	39.09	106.4	110	7.66	1.73	12.1	2	113.8	1.48	0.05	0	0.05	
CMW10	1/23-28/99	1.6" bailer	65.05	35.8	8	12.42	9.5	10.5	3	60.6	5.85	0	0	0	purged dry 1/22
FW38	NS	NS	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
CMW14	1/25/99	1.6" bailer	29.88	130.7	29	12.38	10.7	11.3	7	6.19	6.97	0	0	0	purged dry 1/22, 1/23; 22 gal first purge, 7 gal second
CMW16	1/22/99	1.6" bailer	19.01	58.6	59	7.43	0.85	9.5	1	-59.4	4.15	0.04	NT	0.04	
CMW17	1/28/99	1.6" bailer	17.32	114.1	35	7.85	1.12	10.8	29	NS	NT	0.55	NT	0.55	purged dry 1/27, 1/28
CMW18	1/27/99	1.6" bailer	36.93	76.3	96	7.49	0.805	11.6	812	90.4	NT	0.1	NT	0.1	
CMW19	1/25/99	1.6" bailer	20.11	91.1	19	8.40	2.74	11.0	>999	5.07	4.19	0.11	NT	0.11	purged dry 1/21, 1/22, 1/23
CMW20	NS	NS	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
CMW21	1/28/99	1.6" bailer	22.55	63.5	20.5	9.30	0.758	12.3	318	4.1	NT	0.26	NT	0.26	purged dry 1/22, 1/23, 1/25, 1/27
CMW22	1/26/99	1.6" bailer	116.18	11.9	1.55	9.18	0.80	10.7	112	-11	2.58	0.78	NT	0.78	purged dry 1/22, 1/23, 1/25; partial suite submitted (explosives, total and dissolved TAL metals, & TDS)
CMW23	1/26/99	1.6" bailer	95.57	48.4	7.8	9.89	2.18	11.1	NS	-118.6	4.86	0.18	NT	0.18	purged dry 1/22, 1/23, 1/25
CMW24	2/1/99	1.6" bailer	61.90	284.0	85	8.35	2.9	11.4	52	216	NT	0.3	NT	0.3	
CMW25	1/27/99	1.6" bailer	35.31	106.4	30	8.57	0.95	9.7	402	-77.1	2.45	0.21	NT	0.21	purged dry 1/25, 1/26
CLOSED OB/	OD AREA														
KMW09	1/26/99	1.6" bailer	40.99	102.0	16.3	9.32	3.11	10.7	35	-88.5	3.95	0.08	NT	0.08	purged dry 1/22, 1/23, 1/25
KMW10	1/25/99	1.6" bailer	116.82	18.3	4	7.39	0.92	10.8	508	-65.7	6.53	0.1	NT	0.1	purged dry 1/22, 1/23, 1/25
KMW11	1/27/99	1.6" bailer	31.71	155.5	82	8.70	0.98	11.6	208	-108.3	4.61	0.06	NT	0.06	purged dry 1/25, 1/26
KMW12	1/26/99	1.6" bailer	50.36	155.0	18	7.40	3.61	11.4	312	-81.7	3.75	0.04	NT	0.04	purged dry 1/22, 1/23, 1/25
KMW13	1/26-29/99	1.6" bailer	46.66	31.7	5.75	6.89	4.37	10.2	7	-52.3	2.85	0.2	NT	0.2	purged dry 1/22, 1/23, 1/25

Notes:

ft bgs = Feet below ground surface gal = Gallons mV = Millivolts NS = Not sampled because of insufficient water NT = Not tested with field test kit or meter NTU = Nephelometric Turbidity Units μmhos/cm = micromhos per centimeter mg/L = milligrams per liter *Ferric Iron = (Total Iron) - (Ferrous Iron)

Table 3-16
Samples that Exceeded Background
Mancos Shale Formation
Closed OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Mancos Shale	Ammonia nitrogen	Filtered	KMW09	10/23/98	961	μg/l	JF	547
Mancos Shale	Ammonia nitrogen	Filtered	KMW09	1/26/99	716	μg/l	F	547
Mancos Shale	Ammonia nitrogen	Total	KMW09	10/23/98	683	μg/l	ĩ	545
Mancos Shale	Ammonia nitrogen	Total	KMW09	1/26/99	759	μg/l	-	545
Mancos Shale	Arsenic	Filtered	KMW09	10/29/96	1.34	μg/l	F	0
Mancos Shale	Arsenic	Filtered	KMW09	10/23/98	1.58	μg/l	F	Ő
Mancos Shale	Arsenic	Total	KMW09	10/29/96	2.01	μg/l	-	1.89
Mancos Shale	Arsenic	Total	KMW09	10/23/98	3.73	μg/i	J	1.89
Mancos Shale	Barium	Filtered	KMW09	10/29/96	65.9	μg/l	F	44.4
Mancos Shale	Barium	Total	KMW09	10/23/98	98.9	μg/l	I	94.4
Mancos Shale	Beryllium	Total	KMW09	10/23/98	0.472	μg/l	J	0.385
Mancos Shale	Cadmium	Total	KMW09	10/23/98	0.176	μg/l	J	0.153
Mancos Shale	Chromium	Filtered	KMW09	10/29/96	7.55	μg/i	F	0
Mancos Shale	Chromium	Filtered	KMW09	2/10/97	3.57	μg/l	F	0
Mancos Shale	Copper	Filtered	KMW09	2/10/97	1.63	μg/l	F	0
Mancos Shale	Copper	Total	KMW09	10/23/98	12.7	μg/l	J	7.06
Mancos Shale	НМХ	Total	KMW09	10/29/96	0.0927	μg/I	JP	0
Mancos Shale	Lead	Total	KMW09	10/23/98	8.08	μg/l	J	5.32
Mancos Shale	Nickel	Filtered	KMW09	10/29/96	6.52	μg/l	F	0
Mancos Shale	Nickel	Filtered	KMW09	2/10/97	3.25	μg/l	F	0
Mancos Shale	Nickel	Total	KMW09	10/29/96	8.21	μg/l		0
Mancos Shale	Nickel	Total	KMW09	2/10/97	5.41	μg/l		0
Mancos Shale	Nitrite (as nitrite)	Total	KMW09	10/23/98	10.1	μg/l		0
Mancos Shale	Selenium	Filtered	KMW09	10/29/96	3.26	μg/l	F	2.67
Mancos Shale	Selenium	Total	KMW09	10/29/96	3.9	μg/l		2.91
Mancos Shale	Vanadium	Filtered	KMW09	10/29/96	4.71	μg/l	F	0
Mancos Shale	Vanadium	Filtered	KMW09	2/10/97	1.36	μg/l	F	0

Notes:

 μ g/l = micrograms per liter.

Flagging Codes:

F - Sample filtered prior to analysis.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

J - Value is estimated.

ESP\$.05-FWDA OB/OD PHASE IB.1-12/21/99

Table 3-17 Samples that Exceeded Screening Criteria Mancos Shale Formation Closed OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
Mancos Shale	Ammonia nitrogen	Filtered	KMW09	10/23/98	961	μg/l	JF	547	174
Mancos Shale	Ammonia nitrogen	Filtered	KMW09	1/26/99	716	μg/l	F	547	174
Mancos Shale	Ammonia nitrogen	Total	KMW09	10/23/98	683	μg/l	J	545	174
Mancos Shale	Ammonia nitrogen	Total	KMW09	1/26/99	759	μg/1		545	174

Notes:

μg/l = micrograms per liter. Flagging Codes:

F - Sample filtered prior to analysis.

J - Value is estimated.

Page 1 of 1

Table 3-18 Samples that Exceeded Closure Performance Standards Mancos Shale Formation Closed OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Cod e s	Background Concentration	Screening Level Concentration	Closure Performance Standards Contentration
Mancos Shale	Ammonia nitrogen	Filtered	KMW09	10/23/98	961	μg/l	JF	547	174	174
Mancos Shale	Ammonia nitrogen	Filtered	KMW09	1/26/99	716	μg/1	F	547	174	174
Mancos Shale	Ammonia nitrogen	Total	KMW09	10/23/98	683	μg/l	J	545	174	174
Mancos Shale	Ammonia nitrogen	Total	KMW09	1/26/99	759	μg/l		545	174	174

Notes:

µg/l = micrograms per liter.

Flagging Codes:

F - Sample filtered prior to analysis.

J - Value is estimated.

.

PMC

Table 3-19 Samples that Exceeded Background Dakota Sandstone Formation Closed OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Dakota Sandstone	Aluminum	Filtered	KMW13	10/23/98	66.6	μg/l	F	55.9
Dakota Sandstone	Barium	Filtered	KMW13	1/27/99	46.5	μg/l	F	44.4
Dakota Sandstone	Barium	Total	KMW13	10/23/98	418	µg/l	J	94.4
Dakota Sandstone	Barium	Total	KMW13	1/26/99	96.2	μg/I		94.4
Dakota Sandstone	Cadmium	Filtered	KMW 13	10/23/98	0.247	μg/l	F	0
Dakota Sandstone	Cadmium	Total	KMW13	10/23/98	0.468	μg/l	J	0.153
Dakota Sandstone	Cobalt	Total	KMW13	1/26/99	10.6	µg/l	JP	7.22
Dakota Sandstone	Iron	Filtered	KMW13	1/27/99	15.9	μg/l	FJP	0
Dakota Sandstone	Lead	Filtered	KMW 13	1/27/99	0.308	μg/l	FJP	0
Dakota Sandstone	Nickel	Filtered	KMW13	10/23/98	28.9	μg/l	F	0
Dakota Sandstone	Nickel	Filtered	KMW13	1/27/99	22.3	µg/l	FJP	0
Dakota Sandstone	Nickel	Total	KMW13	10/23/98	33.1	μg/l		0
Dakota Sandstone	Nickel	Total	KMW13	1/26/99	14.7	μg/l	JP	0
Dakota Sandstone	Nitrite (as nitrite)	Filtered	KMW13	1/28/99	4.51	μg/l	F	0
Dakota Sandstone	Nitrite (as nitrite)	Total	KMW13	10/22/98	10.7	μg/l		0
Dakota Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	KMW13	1/28/99	228	μg/l		174
Dakota Sandstone	Selenium	Filtered	KMW13	10/23/98	5.91	µg/l	F	2.67
Dakota Sandstone	Selenium	Total	KMW13	10/23/98	5.07	μg/l		2.91
Dakota Sandstone	Silver	Total	KMW 13	10/23/98	0.178	μg/I		0.176
Dakota Sandstone	Thallium	Filtered	KMW13	10/23/98	0.325	μg/l	F	0.135
Dakota Sandstone	Thallium	Total	KMW13	10/23/98	0.351	μg/l		0.265
Dakota Sandstone	Zinc	Filtered	KMW13	1/27/99	117	μg/l	F	37

Notes:

µg/l = micrograms per liter.

Flagging Codes:

F - Sample filtered prior to analysis.

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

1

		Dako Closed OB/C Fort	a Sandston	Screening Criteri e Formation ound Water System pot Activity				·	
Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration

Notes: µg/l = micrograms per liter.

.

Table 3-21 Samples that Exceeded Closure Performance Standards Dakota Sandstone Formation Closed OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

						· · · · · · · · · · · · · · · · · · ·				Closure Performance
							Flag	Background	Screening Level	Standards
Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Codes	Concentration	Concentration	Contentration

Dakota Sandstone No samples exceeded closure performance standards.

Notes:

µg/l = micrograms per liter.

,

PMC

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Aluminum	Filtered	CMW14	10/29/96	310	µg/l	F	130
Undifferentiated Chinle	Aluminum	Filtered	CMW14	10/20/98	136	μg/l	F	130
Undifferentiated Chinle	Aluminum	Filtered	CMW17	10/19/96	1000	μg/l	F	130
Undifferentiated Chinle	Aluminum	Filtered	CMW17	1/28/99	1090	μg/l	F	130
Undifferentiated Chinle	Aluminum	Filtered	CMW18	10/19/96	299	μg/l	F	130
Undifferentiated Chinle	Aluminum	Filtered	CMW19	2/10/97	180	μg/l	F	130
Undifferentiated Chinle		Filtered	CMW19	1/25/99	613	μg/l	F	130
Undifferentiated Chinle	Aluminum	Filtered	CMW19	1/25/99	258	μg/l	DF	130
Undifferentiated Chinle		Filtered	KMW11	10/24/96	7910	μg/l	F	130
Undifferentiated Chinle		Filtered	KMW 11	2/11/97	511	μg/l	F	130
Undifferentiated Chinle		Filtered	KMW11	10/24/98	946	μg/l	JF	130
Undifferentiated Chinle	Aluminum	Filtered	KMW11	10/24/98	586	μg/i	JDF	130
Undifferentiated Chinle	Aluminum	Total	CMW04	10/22/96	30100	μg/l		13000
Undifferentiated Chinle	Aluminum	Total	CMW04	10/22/96	30100	μg/l	J	13000
Undifferentiated Chinle	Aluminum	Total	CMW07	2/10/97	52300	μg/l		13000
Undifferentiated Chinle	Aluminum	Total	CMW07	10/20/98	15100	μg/l	J	13000
Undifferentiated Chinle	Aluminum	Total	CMW07	1/21/99	15000	μg/l		13000
Undifferentiated Chinle	Aluminum	Total	CMW17	1/28/99	88200	μg/l		13000
Undifferentiated Chinle	Aluminum	Total	CMW18	10/20/98	24300	μg/l	J	13000
Undifferentiated Chinle	Aluminum	Total	CMW18	1/27/99	21400	μg/l		13000
Undifferentiated Chinle	Aluminum	Total	CMW19	2/10/97	179000	μg/I		13000
Undifferentiated Chinle	Aluminum	Total	CMW19	10/22/98	40900	μg/l	l	13000
Undifferentiated Chinle		Total	CMW19	1/25/99	42600	μg/l		13000
Undifferentiated Chinle		Total	CMW19	1/25/99	73900	μg/l	D	13000
		Total	KMW11	10/24/96	61900	μg/l		13000
		Total	KMW11	2/11/97	29800	μg/l		13000
Undifferentiated Chinle		Total	KMW11	10/24/98	23700	μg/l	J	13000
	Aluminum	Total	KMW11	10/24/98	32800	μg/l	JD	13000
Undifferentiated Chinle		Filtered	CMW04	10/21/98	45.3	μg/l	F	27.9
Undifferentiated Chinle	e	Filtered	CMW04	1/21/99	50.6	μg/l	JPF	27.9

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Ammonia nitrogan	Filtered	CMW04	1/21/99	31.1	μg/l	JPFD	27.9
Undifferentiated Chinle	-	Filtered	CMW04 CMW10	1/25/99	51.1	μg/l	F	27.9
Undifferentiated Chinle	-	Filtered	CMW10 CMW14	10/20/98	1500	μg/I μg/l	JF	27.9
	e	Filtered	CMW14 CMW14	1/25/99	312	μg/l	F	27.9
Undifferentiated Chinle	-	Filtered	CMW14 CMW18	10/20/98	28.9		F	27.9
Undifferentiated Chinle	Ammonia nitrogen		CMW18 CMW19	10/22/98	315	μg/1 μα/1	Г JF	27.9
Undifferentiated Chinle	•	Filtered				μg/1		27.9
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW19	1/25/99	52.1	μg/l	FD F	
Undifferentiated Chinle	•	Filtered	KMW11	10/24/98	39.3	μg/1		27.9
Undifferentiated Chinle	-	Filtered	KMW11	10/24/98	39.3	μg/l	DF	27.9
Undifferentiated Chinle	•	Filtered	KMW11	1/27/99	35.4	μg/l	JPF	27.9
Undifferentiated Chinle	2	Total	CMW04	10/21/98	33.4	μg/l	***	27.2
Undifferentiated Chinle		Total	CMW04	1/21/99	39.2	μg/l	JP	27.2
Undifferentiated Chinle	—	Total	CMW07	10/20/98	68.7	μg/l		27.2
Undifferentiated Chinle	-	Total	CMW10	10/20/98	27.9	μg/l		27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW10	1/26/99	514	μg/l		27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW14	10/20/98	1580	µg/l	J	27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW14	1/25/99	358	µg/l		27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW17	10/22/98	251	µg/l		27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW18	10/20/98	65.2	μg/l		27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW19	10/22/98	452	μg/l		27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW19	1/25/99	41.4	μg/l	JP	27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW19	1/25/99	31.3	μg/l	JPD	27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW24	10/29/98	173	μg/1		27.2
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW24	2/1/99	31.7	μg/l	л	27.2
Undifferentiated Chinle	-	Total	KMW11	10/24/98	52.7	μg/l		27.2
Undifferentiated Chinle	-	Total	KMW11	10/24/98	146	μg/i	D	27.2
Undifferentiated Chinle	-	Filtered	CMW04	1/21/99	2.28	μg/l	FJP	0
Undifferentiated Chinle	•	Filtered	CMW04	1/21/99	2.12	μg/l	DFJP	0
Undifferentiated Chinle	-	Filtered	CMW14	10/29/96	3.41	μg/l	F	0 0
Undifferentiated Chinle	-	Filtered	CMW19	1/25/99	0.657	μg/l	FJP	0

Page 2 of 22

÷.

Table 3-22
Samples that Exceeded Background
Undifferentiated Chinle Formation
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Antimony	Filtered	CMW19	1/25/99	0.615	µg/l	DFJP	0
Undifferentiated Chinle	Antimony	Filtered	KMW11	1/27/99	2.14	μg/l	FJP	0
Undifferentiated Chinle	Antimony	Total	CMW04	1/21/99	3.3	μg/l	JP	1.97
Undifferentiated Chinle	Antimony	Total	CMW04	1/21/99	4.23	μg/l	DJP	1.97
Undifferentiated Chinle	Antimony	Total	CMW14	10/29/96	2.02	μg/l		1.97
Undifferentiated Chinle	Arsenic	Filtered	CMW17	10/19/96	6.01	. σ μg/l	F	4.14
Undifferentiated Chinle		Filtered	CMW17	2/11/97	6.66	μg/l	F	4.14
Undifferentiated Chinle		Filtered	CMW17	10/22/98	6.87	μg/l	F	4.14
Undifferentiated Chinle		Filtered	CMW17	1/28/99	6.64	μg/l	FJP	4.14
Undifferentiated Chinle	Arsenic	Filtered	KMW11	10/24/96	12.5	μg/l	F	4.14
Undifferentiated Chinle	Arsenic	Filtered	KMW11	2/11/97	20.1	μg/l	F	4.14
Undifferentiated Chinle	Arsenic	Filtered	KMW11	10/24/98	20.7	μg/l	JF	4.14
Undifferentiated Chinle	Arsenic	Filtered	KMW11	10/24/98	20.5	μg/l	JDF	4.14
Undifferentiated Chinle	Arsenic	Filtered	KMW11	1/27/99	17.2	μg/l	F	4.14
Undifferentiated Chinle	Arsenic	Total	CMW17	10/19/96	5.91	μg/l		4.87
Undifferentiated Chinle	Arsenic	Total	CMW17	2/11/97	7.89	μg/l		4.87
Undifferentiated Chinle	Arsenic	Total	CMW17	10/22/98	6.5	μg/l	J	4.87
Undifferentiated Chinle	Arsenic	Total	CMW19	2/10/97	5.91	μg/l		4.87
Undifferentiated Chinle	Arsenic	Total	KMW11	10/24/96	12.7	µg/l		4.87
Undifferentiated Chinle	Arsenic	Total	KMW11	2/11/97	19.8	μg/l		4.87
Undifferentiated Chinle	Arsenic	Total	KMW11	10/24/98	19.2	μg/l	J	4.87
Undifferentiated Chinle	Arsenic	Total	KMW11	10/24/98	19.4	μg/l	JD	4.87
Undifferentiated Chinle	Arsenic	Total	KMW11	1/27/99	16.7	μg/l		4.87
Undifferentiated Chinle		Filtered	CMW10	2/11/97	540	μg/1	F	58.8
Undifferentiated Chinle		Filtered	CMW10	10/26/98	64.2	μg/l	JF	58.8
Undifferentiated Chinle	Barium	Filtered	CMW14	10/29/96	115	μg/l	F	58.8
Undifferentiated Chinle	Barium	Filtered	CMW14	2/11/97	128	μg/l	F	58.8
Undifferentiated Chinle		Filtered	CMW14	10/20/98	574	μg/I	JF	58.8
Undifferentiated Chinle	Barium	Filtered	CMW17	1/28/99	118	μg/l	F	58.8
Undifferentiated Chinle	Barium	Filtered	CMW18	2/11/97	68.7	μg/l	F	58.8

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Barium	Filtered	CMW18	10/20/98	62.4	μg/l	JF	58.8
Undifferentiated Chinle	Barium	Filtered	CMW18	1/27/99	161	μg/l	F	58.8
Undifferentiated Chinle	Barium	Filtered	KMW11	10/24/96	62.3	μg/1	F	58.8
Undifferentiated Chinle	Barium	Filtered	KMW11	10/24/98	95.4	μg/l	JF	58.8
Undifferentiated Chinle	Barium	Filtered	KMW11	10/24/98	71.4	μg/l	JDF	58.8
Undifferentiated Chinle	Barium	Filtered	KMW11	1/27/99	105	μg/l	F	58.8
Undifferentiated Chinle	Barium	Total	CMW04	10/22/96	161	μg/l		122
Undifferentiated Chinle	Barium	Total	CMW07	2/10/97	430	μg/l		122
Undifferentiated Chinle	Barium	Total	CMW07	10/20/98	157	μg/l	J	122
Undifferentiated Chinle	Barium	Total	CMW07	1/21/99	419	μg/l		122
Undifferentiated Chinle	Barium	Total	CMW10	2/11/97	850	μg/l		122
Undifferentiated Chinle	Barium	Total	CMW14	10/20/98	177	μg/l	J	122
Undifferentiated Chinle	Barium	Total	CMW17	1/28/99	776	μg/l		122
Undifferentiated Chinle	Barium	Total	CMW18	10/19/96	150	µg/l		122
Undifferentiated Chinle	Barium	Total	CMW18	10/20/98	369	µg/l	J	122
Undifferentiated Chinle	Barium	Total	CMW18	1/27/99	330	μg/l		122
Undifferentiated Chinle	Barium	Total	CMW19	2/10/97	530	µg/l		122
Undifferentiated Chinle	Barium	Total	CMW19	10/22/98	279	µg/l	J	122
Undifferentiated Chinle	Barium	Total	CMW19	1/25/99	236	μg/l		122
Undifferentiated Chinle	Barium	Total	CMW19	1/25/99	381	μg/l	D	122
Undifferentiated Chinle	Barium	Total	KMW11	10/24/96	320	μg/l		122
Undifferentiated Chinle	Barium	Total	KMW11	2/11/97	123	μg/l		122
Undifferentiated Chinle	Barium	Total	KMW11	10/24/98	264	μg/l	J	122
Undifferentiated Chinle	Barium	Total	KMW11	10/24/98	357	μg/l	JD	122
Undifferentiated Chinle	Beryllium	Total	CMW04	10/22/96	0.381	μg/l		0
Undifferentiated Chinle	Beryllium	Total	CMW04	10/22/96	0.218	μg/l	D	0
Undifferentiated Chinle	Beryllium	Total	CMW07	2/10/97	0.826	μg/l		0
Undifferentiated Chinle	Beryllium	Total	CMW07	10/20/98	0.342	μg/1	J	0
Undifferentiated Chinle	Beryllium	Total	CMW07	1/21/99	0.892	μg/l	JP	0
Undifferentiated Chinle	-	Total	CMW17	1/28/99	1.03	μg/l	JP	0

PMC

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Table 3-22
Samples that Exceeded Background
Undifferentiated Chinle Formation
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Beryllium	Total	CMW18	10/19/96	0.211	μg/l		(
Undifferentiated Chinle	Beryllium	Total	CMW18	10/20/98	0.283	μg/l	J	(
Undifferentiated Chinle	Beryllium	Total	CMW18	1/27/99	0.328	μg/l	JP	(
Undifferentiated Chinle	Beryllium	Total	CMW19	2/10/97	2.51	μg/l		(
Undifferentiated Chinle	Beryllium	Total	CMW19	10/22/98	0.614	μg/l	J	(
Undifferentiated Chinle	Beryllium	Total	CMW19	1/25/99	0.901	μg/l	JP	(
Undifferentiated Chinle	Beryllium	Total	CMW19	1/25/99	1.53	μg/l	DJP	(
Undifferentiated Chinle	Beryllium	Total	KMW1 1	10/24/96	0.471	μg/l		(
Undifferentiated Chinle	Beryllium	Total	KMW11	2/11/97	0.336	μg/l		(
Undifferentiated Chinle	Beryllium	Total	KMW11	10/24/98	0.329	μg/l	J	(
Undifferentiated Chinle	Beryllium	Total	KMW11	10/24/98	0.51	μg/l	JD	0
Undifferentiated Chinle	Cadmium	Filtered	CMW04	10/22/96	0.248	μg/l	DF	C
Undifferentiated Chinle	Cadmium	Filtered	CMW04	2/10/97	0.216	μg/l	F	0
Undifferentiated Chinle	Cadmium	Filtered	CMW04	10/21/98	0.644	μg/l	F	C
Undifferentiated Chinle	Cadmium	Filtered	CMW04	1/21/99	0.171	µg/l	DFJP	C
Undifferentiated Chinle	Cadmium	Filtered	CMW07	1/21/99	6.81	μg/l	F	C
Undifferentiated Chinle	Cadmium	Filtered	CMW10	2/11/97	0.217	μg/l	F	C
Undifferentiated Chinle	Cadmium	Filtered	CMW10	10/26/98	1.3	μg/l	JF	C
Undifferentiated Chinle	Cadmium	Filtered	CMW14	10/29/96	0.245	μg/l	F	C
Undifferentiated Chinle	Cadmium	Filtered	CMW14	2/11/97	0.273	μg/l	F	C
Undifferentiated Chinle	Cadmium	Filtered	CMW14	10/20/98	0.34	µg/l	F	C
Undifferentiated Chinle	Cadmium	Filtered	CMW19	10/29/96	0.206	μg/l	F	C
Undifferentiated Chinle	Cadmium	Filtered	CMW19	2/10/97	0.271	μg/1	F	C
Undifferentiated Chinle	Cadmium	Filtered	CMW19	10/22/98	0.737	μg/l	F	0
Undifferentiated Chinle	Cadmium	Filtered	CMW24	10/29/98	0.263	μg/l	JF	0
Undifferentiated Chinle	Cadmium	Total	CMW04	10/22/96	0.118	μg/l		0
Undifferentiated Chinle	Cadmium	Total	CMW04	10/22/96	0.101	μg/l	D	0
Undifferentiated Chinle	Cadmium	Total	CMW04	2/10/97	0.172	μg/l		0
Undifferentiated Chinle	Cadmium	Total	CMW04	10/21/98	0.657	μg/l	J	0
Undifferentiated Chinle	Cadmium	Total	CMW04	1/21/99	0.174	µg/I	JP	0

.

{

-							Flag	Background
Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Codes	Concentration
Undifferentiated Chinle	Cadmium	Total	CMW10	2/11/97	0.213	μg/l		0
Undifferentiated Chinle		Total	CMW10 CMW10	10/20/98	0.883	μg/l	J	0
Undifferentiated Chinle		Total	CMW14	10/29/96	0.389	μg/l	,	0
Undifferentiated Chinle		Total	CMW14	2/11/97	0.248	με/1 μg/l		0
Undifferentiated Chinle		Total	CMW14	10/20/98	0.709	μg/i	J	0
Undifferentiated Chinle		Total	CMW14	1/25/99	0.2	μg/l	JP	0
Undifferentiated Chinle		Total	CMW19	10/29/96	0.271	μg/l	51	0
Undifferentiated Chinle		Total	CMW19	2/10/97	0.42	μg/l		0
Undifferentiated Chinle		Total	CMW19	10/22/98	1.43	μg/l	J	0
Undifferentiated Chinle	+	Total	CMW19	1/25/99	0.213	μg/l	JP	0
Undifferentiated Chinle		Total	CMW19	1/25/99	0.136	μg/l	DJP	Ő
Undifferentiated Chinle		Total	CMW24	10/29/98	0.251	μg/l	J	ů 0
Undifferentiated Chinle		Total	KMW11	10/24/96	0.118	μg/l	•	ů 0
Undifferentiated Chinle		Total	KMW11	10/24/98	0.148	μg/l	JD	0
Undifferentiated Chinle		Filtered	CMW10	2/11/97	181	μg/i	F	3.02
Undifferentiated Chinle	Chromium	Filtered	CMW10	10/26/98	270	μg/l	F	3.02
Undifferentiated Chinle	Chromium	Filtered	CMW10	1/23/99	199	μg/l	F	3.02
Undifferentiated Chinle	Chromium	Filtered	CMW14	10/29/96	95.2	μg/l	F	3.02
Undifferentiated Chinle	Chromium	Filtered	CMW14	2/11/97	54.2	μg/l	F	3.02
Undifferentiated Chinle	Chromium	Filtered	CMW14	10/20/98	142	μg/l	JF	3.02
Undifferentiated Chinle	Chromium	Filtered	CMW14	1/25/99	66.6	 μg/l	F	3.02
Undifferentiated Chinle	Chromium	Filtered	CMW17	10/19/96	3.86	μg/l	F	3.02
Undifferentiated Chinle	Chromium	Filtered	KMW11	10/24/96	6.5	μg/1	F	3.02
Undifferentiated Chinle	Chromium	Total	CMW07	10/19/96	32.4	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	CMW07	2/10/97	7.21	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	CMW07	10/20/98	10.4	μg/1	J	7.18
Undifferentiated Chinle	Chromium	Total	CMW10	2/11/97	173	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	CMW10	10/20/98	282	μg/l	J	7.18
Undifferentiated Chinle	Chromium	Total	CMW10	1/23/99	174	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	CMW14	10/29/96	87.2	μg/l		7.18

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

٠

Table 3-22
Samples that Exceeded Background
Undifferentiated Chinle Formation
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Chromium	Total	CMW14	2/11/97	46.6	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	CMW14	10/20/98	113	μg/l	J	7.18
Undifferentiated Chinle	Chromium	Total	CMW14	1/25/99	75.2	μg/l		7.18
Undifferentiated Chinle		Total	CMW17	1/28/99	58.6	μg/I		7.18
Undifferentiated Chinle		Total	CMW18	10/20/98	23.2	μg/l	J	7.18
		Total	CMW18	1/27/99	20.4	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	CMW19	2/10/97	23.7	μg/1		7.18
Undifferentiated Chinle	Chromium	Total	CMW19	10/22/98	49.4	μg/l	J	7.18
Undifferentiated Chinle		Total	CMW19	1/25/99	39.8	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	CMW19	1/25/99	66	μg/l	D	7.18
	Chromium	Total	CMW24	10/29/98	10.1	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	KMW11	10/24/96	10	μg/1		7.18
Undifferentiated Chinle	Chromium	Total	KMW11	10/24/98	16.4	μg/l		7.18
Undifferentiated Chinle	Chromium	Total	KMW11	10/24/98	23.6	μg/l	D	7.18
Undifferentiated Chinle	Cobalt	Filtered	CMW07	1/21/99	7.11	μg/l	FJP	(
Undifferentiated Chinle	Cobalt	Filtered	CMW10	2/11/97	1.58	μg/l	F	(
Undifferentiated Chinle	Cobalt	Filtered	CMW10	1/23/99	12	μg/l	FJP	(
Undifferentiated Chinle	Cobalt	Filtered	CMW14	10/29/96	1.23	μg/l	F	C
Undifferentiated Chinle	Cobalt	Filtered	CMW14	2/11/97	1.18	μg/l	F	(
Undifferentiated Chinle	Cobalt	Filtered	CMW14	1/25/99	14.2	μg/l	FJP	(
Undifferentiated Chinle	Cobalt	Filtered	CMW17	10/19/96	1.85	μg/l	F	(
Undifferentiated Chinle	Cobalt	Total	CMW04	10/22/96	1.31	μg/1		1.08
Undifferentiated Chinle	Cobalt	Total	CMW04	1/21/99	8.08	μg/l	JP	1.08
Undifferentiated Chinle	Cobalt	Total	CMW07	10/19/96	1.69	μg/l		1.08
Undifferentiated Chinle		Total	CMW07	2/10/97	2.59	μg/I		1.08
Undifferentiated Chinle		Total	CMW10	2/11/97	2.14	μg/l		1.08
Undifferentiated Chinle		Total	CMW14	10/29/96	1.23	μg/l		1.08
Undifferentiated Chinle		Total	CMW14	2/11/97	1.12	μg/l		1.0
Undifferentiated Chinle		Total	CMW17	10/19/96	2.66	μg/l		1.0
Undifferentiated Chinle	Cobalt	Total	CMW17	2/11/97	1.27	μg/l		1.08

,

ł

•

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
		T 1	<u></u>	10/10/07	1.07			
Undifferentiated Chinle		Total	CMW18	10/19/96	1.86	μg/l		1.08
Undifferentiated Chinle		Total	CMW19	2/10/97	8.96	μg/1	DID	1.08
Undifferentiated Chinle		Total	CMW19	1/25/99	8.59	μg/l	DJP	1.08
Undifferentiated Chinle		Total	KMW11	10/24/96	3.41	µg/l		1.08
Undifferentiated Chinle	11	Filtered	CMW04	1/21/99	3.51	μg/l	DFJP	2.32
Undifferentiated Chinle		Filtered	CMW10	2/11/97	14.6	μg/l	F	2.32
Undifferentiated Chinle		Filtered	CMW10	1/23/99	3.48	μg/l	FJP	2.32
Undifferentiated Chinle		Filtered	CMW14	10/29/96	30.3	µg/l	F	2.32
Undifferentiated Chinle		Filtered	CMW14	2/11/97	6.19	μg/1	F	2.32
Undifferentiated Chinle	Copper	Filtered	CMW14	10/20/98	8.18	μg/l	ſF	2.32
Undifferentiated Chinle	Copper	Filtered	CMW17	10/19/96	8.14	μg/l	F	2.32
Undifferentiated Chinle	Copper	Filtered	CMW18	10/19/96	3.19	μg/l	F	2.32
Undifferentiated Chinle	Copper	Filtered	CMW19	10/29/96	4.61	μg/l	F	2.32
Undifferentiated Chinle	Copper	Filtered	CMW19	2/10/97	2.62	μg/l	F	2.32
Undifferentiated Chinle	Copper	Filtered	CMW19	1/25/99	5.75	μg/l	DFJP	2.32
Undifferentiated Chinle	Copper	Filtered	KMW11	10/24/96	5.7	μg/l	F	2.32
Undifferentiated Chinle	Copper	Filtered	KMW11	10/24/98	5.04	μg/l	F	2.32
Undifferentiated Chinle	Copper	Total	CMW10	2/11/97	17.6	μg/l		13.4
Undifferentiated Chinle	Copper	Total	CMW14	10/29/96	27.3	μg/l		13.4
Undifferentiated Chinle	Copper	Total	CMW17	1/28/99	13.6	μg/l	JP	13.4
Undifferentiated Chinle	Copper	Total	CMW19	2/10/97	36.9	μg/1		13.4
	Copper	Total	CMW19	10/22/98	41	μg/l	J	13.4
	Copper	Total	CMW19	1/25/99	17.2	μg/l	JP	13.4
Undifferentiated Chinle		Total	CMW19	1/25/99	37.5	μg/1	D	13.4
	Fluoride	Filtered	CMW07	1/21/99	2190	μg/l	F	1160
	Fluoride	Total	CMW04	1/21/99	3890	μg/l	•	0
	Fluoride	Total	CMW04	1/21/99	3860	μg/l	D	0
	HMX	Total	CMW18	10/19/96	25.4	μg/l	c	0
	HMX	Total	CMW18 CMW18	2/11/97	37.2	μg/l	c	0
Undifferentiated Chinle		Total	CMW18 CMW18	10/20/98	22.6	μg/1 μg/1	c	0

Page 8 of 22

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	НМХ	Total	CMW18	1/27/99	19.4	μg/l		0
Undifferentiated Chinle	Iron	Filtered	CMW17	10/19/96	608	μg/l	F	48.7
Undifferentiated Chinle	Iron	Filtered	CMW17	1/28/99	501	μg/l	F	48.7
Undifferentiated Chinle	Iron	Filtered	CMW18	10/19/96	164	μg/l	F	48.7
Undifferentiated Chinle	Iron	Filtered	CMW19	2/10/97	63.7	μg/l	F	48.7
Undifferentiated Chinle	Iron	Filtered	CMW19	1/25/99	240	μg/l	F	48.7
Undifferentiated Chinle	Iron	Filtered	CMW19	1/25/99	103	μg/1	DF	48.7
Undifferentiated Chinle	Iron	Filtered	CMW24	2/1/99	62.1	μg/l	F	48.7
Undifferentiated Chinle		Filtered	KMW11	10/24/96	4470	µg/l	F	48.7
Undifferentiated Chinle	Iron	Filtered	KMW11	10/24/96	4470	μg/l	FJ	48.7
Undifferentiated Chinle	Iron	Filtered	KMW11	2/11/97	228	μg/l	F	48.7
Undifferentiated Chinle	Iron	Filtered	KMW11	10/24/98	443	μg/l	JF	48.7
Undifferentiated Chinle	Iron	Filtered	KMW11	10/24/98	254	μg/l	JDF	48.7
Undifferentiated Chinle	Iron	Total	CMW04	10/22/96	15200	μg/l		6860
Undifferentiated Chinle	Iron	Total	CMW04	10/22/96	15200	μg/l	J	6860
Undifferentiated Chinle	Iron	Total	CMW07	2/10/97	27800	μg/l		6860
Undifferentiated Chinle	Iron	Total	CMW07	10/20/98	7230	μg/1	J	6860
Undifferentiated Chinle	Iron	Total	CMW17	1/28/99	46300	μg/l		6860
Undifferentiated Chinle	Iron	Total	CMW18	10/20/98	14500	μg/l	J	6860
Undifferentiated Chinle	Iron	Total	CMW18	1/27/99	10900	μg/l		6860
Undifferentiated Chinle	Iron	Total	CMW19	2/10/97	101000	μg/l		6860
Undifferentiated Chinle	Iron	Total	CMW19	10/22/98	18900	μg/ł	J	6860
Undifferentiated Chinle	Iron	Total	CMW19	1/25/99	18800	μg/1		6860
Undifferentiated Chinle	Iron	Total	CMW19	1/25/99	36100	μg/l	D	6860
Undifferentiated Chinle	Iron	Total	KMW11	10/24/96	36300	μg/l		6860
Undifferentiated Chinle	Iron	Total	KMW11	2/11/97	17900	μg/l		6860
Undifferentiated Chinle	Iron	Total	KMW11	10/24/98	13600	μg/l	J	6860
Undifferentiated Chinle	Iron	Total	KMW11	10/24/98	20600	μg/l	JD	6860
Undifferentiated Chinle	Lead	Filtered	CMW14	10/29/96	3.09	μg/l	F	0.73
Undifferentiated Chinle		Filtered	CMW14	10/20/98	1.09	μg/l	F	0.73

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

τ.

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Land	Filtered	CMW17	1/28/99	1.05	μg/l	FJP	0.73
•		Filtered	CMW17 CMW19	1/25/99	1.05	μg/1 μg/1	DFJP	0.73
Undifferentiated Chinle		Filtered	CMW24	10/29/98	1.00	μg/l	JF	0.73
Undifferentiated Chinle		Filtered	KMW11	10/24/96	1.2	μg/i	F	0.73
Undifferentiated Chinle		Total	CMW07	2/10/97	6.18	μg/l		2.39
Undifferentiated Chinle		Total	CMW07	10/20/98	3.26	μg/l	J	2.39
Undifferentiated Chinle		Total	CMW07	1/21/99	7.77	μg/l		2.39
Undifferentiated Chinle		Total	CMW14	10/29/96	4.65	μg/l		2.39
Undifferentiated Chinle		Total	CMW17	1/28/99	9.46	μg/l		2.39
Undifferentiated Chinle		Total	CMW18	10/20/98	5.8	μg/l	J	2.39
Undifferentiated Chinle		Total	CMW18	1/27/99	5.21	μg/l	-	2.39
•		Total	CMW19	2/10/97	25.9	μg/l		2.39
		Total	CMW19	10/22/98	10.2	μg/i	J	2.39
Undifferentiated Chinle		Total	CMW19	1/25/99	7.82	μg/l		2.39
Undifferentiated Chinle	Lead	Total	CMW19	1/25/99	13.3	μg/l	D	2.39
Undifferentiated Chinle		Total	CMW24	10/29/98	2.77	μg/1	J	2.39
Undifferentiated Chinle	Lead	Total	KMW11	10/24/96	7.29	μg/I		2.39
Undifferentiated Chinle	Lead	Total	KMW11	2/11/97	3.02	μg/l		2.39
Undifferentiated Chinle	Lead	Total	KMW11	10/24/98	4.67	μg/l	J	2.39
Undifferentiated Chinle	Lead	Total	KMW11	10/24/98	6.04	μg/1	JD	2.39
Undifferentiated Chinle	Manganese	Filtered	CMW04	10/22/96	58.4	μg/1	F	14.1
Undifferentiated Chinle	Manganese	Filtered	CMW04	10/22/96	47.9	μg/l	DF	14.1
Undifferentiated Chinle	Manganese	Filtered	CMW04	2/10/97	33.2	μg/l	F	14.1
Undifferentiated Chinle	Manganese	Filtered	CMW04	10/21/98	62.7	μg/l	JF	14.1
Undifferentiated Chinle	Manganese	Filtered	CMW04	1/21/99	45.8	μg/1	F	14.1
Undifferentiated Chinle	Manganese	Filtered	CMW04	1/21/99	45	μg/l	DF	14.1
Undifferentiated Chinle	Manganese	Filtered	CMW19	2/10/97	29.2	μg/l	F	14.1
	Manganese	Filtered	CMW19	10/22/98	51.5	μg/l	JF	14.1
Undifferentiated Chinle	Manganese	Filtered	CMW24	10/29/98	56.9	μg/l	JF	14.1
Undifferentiated Chinle	•	Filtered	CMW24	2/1/99	69.4	μg/l	F	14.1

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Table 3-22
Samples that Exceeded Background
Undifferentiated Chinle Formation
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Manganese	Total	CMW07	2/10/97	480	μg/l		194
Undifferentiated Chinle	Manganese	Total	CMW07	10/20/98	245	μg/1	J	194
Undifferentiated Chinle	Manganese	Total	CMW07	1/21/99	356	μg/l		194
Undifferentiated Chinle	Manganese	Total	CMW17	1/28/99	767	μg/l		194
Undifferentiated Chinle	Manganese	Total	CMW18	10/20/98	445	μg/l	J	194
Undifferentiated Chinle	Manganese	Total	CMW18	1/27/99	370	μg/l		194
Undifferentiated Chinle	Manganese	Total	CMW19	2/10/97	700	μg/l		194
Undifferentiated Chinle	Manganese	Total	CMW19	10/22/98	464	μg/l	J	194
Undifferentiated Chinle	Manganese	Total	CMW19	1/25/99	343	μg/l		194
Undifferentiated Chinle	Manganese	Total	CMW19	1/25/99	862	μg/l	D	194
Undifferentiated Chinle	Manganese	Total	KMW11	10/24/96	290	μg/l		194
Undifferentiated Chinle	Manganese	Total	KMW11	10/24/98	366	μg/l	J	194
Undifferentiated Chinle	Manganese	Total	KMW11	10/24/98	572	μg/l	Л	194
Undifferentiated Chinle	Mercury	Filtered	CMW07	1/21/99	0.175	μg/l	FJP	0.133
Undifferentiated Chinle	Nickel	Filtered	CMW10	2/11/97	10.1	μg/l	F	2.41
Undifferentiated Chinle	Nickel	Filtered	CMW14	10/29/96	7.64	μg/l	F	2.41
Undifferentiated Chinle	Nickel	Filtered	CMW14	2/11/97	4.41	μg/l	F	2.41
Undifferentiated Chinle	Nickel	Filtered	CMW14	1/25/99	18.4	μg/l	FJP	2.41
Undifferentiated Chinle	Nickel	Filtered	CMW18	10/19/96	3.64	μg/l	F	2.41
Undifferentiated Chinle	Nickel	Filtered	CMW18	2/11/97	3.09	μg/l	F	2.41
Undifferentiated Chinle	Nickel	Filtered	CMW18	1/27/99	18.5	μg/l	FJP	2.41
Undifferentiated Chinle	Nickel	Filtered	KMW11	10/24/96	2.44	μg/l	F	2.41
Undifferentiated Chinle	Nickel	Total	CMW07	10/19/96	49.5	μg/l		8.26
Undifferentiated Chinle	Nickel	Total	CMW10	2/11/97	11.5	μg/l		8.26
Undifferentiated Chinle	Nickel	Total	CMW17	1/28/99	31.1	μg/l	JP	8.26
Undifferentiated Chinle	Nickel	Total	CMW18	10/20/98	15.6	μg/l	J	8.26
Undifferentiated Chinle	Nickel	Total	CMW18	1/27/99	21.8	μg/1	JP	8.26
Undifferentiated Chinle		Total	CMW19	2/10/97	21.5	μg/l		8.26
Undifferentiated Chinle	Nickel	Total	CMW19	10/22/98	38.6	μg/l	J	8.26
Undifferentiated Chinle		Total	CMW19	1/25/99	21	μg/I	JP	8.26

ι.

ł

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Nickel	Total	CMW19	1/25/99	34.9	μg/l	DJP	8.26
Undifferentiated Chinle		Total	KMW11	10/24/96	12.5	μg/1		8.26
Undifferentiated Chinle		Total	KMW11	10/24/98	19	μg/1		8.26
Undifferentiated Chinle		Total	KMW11	10/24/98	28.3	μg/1	D	8.26
Undifferentiated Chinle		Total	CMW07	10/20/98	13.9	μg/l	J	12.9
Undifferentiated Chinle		Total	CMW10	10/27/98	26	μg/l		12.9
Undifferentiated Chinle	, .	Total	CMW14	10/20/98	24.8	μg/l		12.9
Undifferentiated Chinle	Nitrite (as nitrite)	Total	CMW18	10/20/98	13.4	µg/l	J	12.9
Undifferentiated Chinle	Nitrite (as nitrite)	Total	CMW24	10/29/98	20.2	μg/l		12.9
Undifferentiated Chinle	Nitrite (as nitrite)	Total	KMW11	10/24/98	27.8	μg/l		12.9
Undifferentiated Chinle	Nitrite (as nitrite)	Total	KMW11	10/24/98	17.9	µg/l	D	12.9
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW10	10/20/98	4240	μg/l	J	168
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW10	1/26/99	3500	μg/l		168
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW17	10/22/98	179	µg/l	J	168
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Totał	CMW17	1/28/99	500	µg/l		168
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW18	10/20/98	1860	µg/l	J	168
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW18	1/27/99	1580	μg/l		168
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Total	KMW11	10/24/98	498	μg/l	J	168
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Total	KMW11	10/24/98	488	μg/l	Ъ	168
Undifferentiated Chinle	Nitrite, nitrate - nonspecific (as nitrogen)	Total	KMW11	1/27/99	455	μg/l		168
Undifferentiated Chinle	RDX	Total	CMW17	10/19/96	0.278	µg/l	С	0
Undifferentiated Chinle	RDX	Total	CMW17	2/11/97	0.264	µg/l	С	0
Undifferentiated Chinle	RDX	Total	CMW17	10/22/98	0.407	µg/l	С	0
Undifferentiated Chinle	RDX	Total	CMW17	1/28/99	0.286	µg/l		0
Undifferentiated Chinle	RDX	Total	CMW18	10/19/96	120	µg/l	С	0
Undifferentiated Chinle	RDX	Total	CMW18	2/11/97	170	μg/l	С	0
Undifferentiated Chinle	RDX	Total	CMW18	10/20/98	100	μg/l	С	0
Undifferentiated Chinle	RDX	Total	CMW18	1/27/99	81.3	μg/l		0
Undifferentiated Chinle	RDX	Total	CMW19	10/29/96	0.173	µg/l	С	0
Undifferentiated Chinle	RDX	Total	KMW11	2/11/97	0.0923	µg/l	JPC	0

Page 12 of 22

٠

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Selenium	Filtered	CMW10	2/11/97	19	µg/l	F	9.84
Undifferentiated Chinle	Selenium	Filtered	CMW10	10/26/98	82.1	μg/l	F	9.84
Undifferentiated Chinle		Filtered	CMW10	1/23/99	41.5	μg/l	F	9.84
Undifferentiated Chinle	Selenium	Total	CMW10	2/11/97	17.2	μg/1		11.4
Undifferentiated Chinle	Selenium	Total	CMW10	10/20/98	84.5	μg/l		11.4
Undifferentiated Chinle	Selenium	Total	CMW10	1/23/99	46.3	μg/l		11.4
Undifferentiated Chinle	Silver	Total	CMW17	1/28/99	5.49	μg/1	JP	1.61
Undifferentiated Chinle	Thallium	Total	CMW19	2/10/97	0.16	μg/l		0
Undifferentiated Chinle	Thallium	Total	CMW19	10/22/98	0.163	μg/l		0
Undifferentiated Chinle	Thallium	Total	KMW11	10/24/96	0.136	μg/l		0
Undifferentiated Chinle	Thallium	Total	KMW 11	10/24/98	0.119	μg/l		0
Undifferentiated Chinle	Thallium	Total	KMW11	10/24/98	0.128	μg/l	D	0
Undifferentiated Chinle	Vanadium	Filtered	CMW17	1/28/99	76.2	μg/1	F	58.1
Undifferentiated Chinle	Vanadium	Filtered	KMW11	10/24/96	168	μg/l	F	58.1
Undifferentiated Chinle	Vanadium	Filtered	KMW11	2/11/97	200	μg/l	F	58.1
Undifferentiated Chinle	Vanadium	Filtered	KMW11	10/24/98	198	μg/l	F	58.1
Undifferentiated Chinle	Vanadium	Filtered	KMW11	10/24/98	199	μg/l	DF	58.1
Undifferentiated Chinle	Vanadium	Filtered	KMW11	1/27/99	191	μg/l	F	58.1
Undifferentiated Chinle	Vanadium	Total	CMW07	2/10/97	79.3	μg/l		65
Undifferentiated Chinle	Vanadium	Total	CMW07	1/21/99	69	μg/l		65
Undifferentiated Chinle	Vanadium	Total	CMW17	1/28/99	205	μg/l		65
Undifferentiated Chinle	Vanadium	Total	CMW19	2/10/97	97.7	μg/l		65
Undifferentiated Chinle	Vanadium	Total	CMW19	10/22/98	67	μg/l	J	65
Undifferentiated Chinle	Vanadium	Total	CMW19	1/25/99	101	µg/l	D	65
Undifferentiated Chinle	Vanadium	Total	KMW11	10/24/96	220	μg/l		65
Undifferentiated Chinle	Vanadium	Total	KMW11	2/11/97	230	μg/l		65
Undifferentiated Chinle	Vanadium	Total	KMW11	10/24/98	242	μg/l		65
Undifferentiated Chinle	Vanadium	Total	KMW11	10/24/98	260	μg/l	D	65
Undifferentiated Chinle		Total	KMW11	1/27/99	198	μg/l		65
Undifferentiated Chinle		Filtered	CMW04	1/21/99	9.88	μg/l	FJP	8.75

ı.

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Undifferentiated Chinle	Zinc	Filtered	CMW17	1/28/99	16.3	μg/l	FJP	8.75
Undifferentiated Chinle	Zinc	Filtered	CMW17 CMW18	1/27/99	80.2	μg/l μg/l	F	8.75
Undifferentiated Chinle		Filtered	CMW18 CMW24	2/1/99	23.8	μg/l	F	8.75
Undifferentiated Chinle		Filtered	KMW11	2/11/97	9.82	μg/l	F	8.75
Undifferentiated Chinle		Filtered	KMW11	10/24/98	107	μg/l	JF	8.75
Undifferentiated Chinle		Filtered	KMW11	1/27/99	10	μg/l	FJP	8.75
Undifferentiated Chinle		Total	CMW04	1/21/99	17.5	μg/l	JP	16.4
Undifferentiated Chinle		Total	CMW07	1/21/99	24.5	μg/l	71	16.4
Undifferentiated Chinle		Total	CMW17	1/28/99	82.3	μg/l		16.4
Undifferentiated Chinle		Total	CMW18	10/20/98	37.1	μg/l	J	16.4
Undifferentiated Chinle		Total	CMW18	1/27/99	32.8	μg/l	-	16.4
Undifferentiated Chinle	Zinc	Total	CMW19	2/10/97	38.3	μg/l		16.4
Undifferentiated Chinle	Zinc	Total	CMW19	10/22/98	66.9	μg/l	J	16.4
Undifferentiated Chinle	Zinc	Total	CMW19	1/25/99	49.3	μg/l		16.4
Undifferentiated Chinle	Zinc	Total	CMW19	1/25/99	88.5	μg/l	D	16.4
Undifferentiated Chinle	Zinc	Total	CMW24	10/29/98	54.8	μg/l	J	16.4
Undifferentiated Chinle	Zinc	Total	KMW11	10/24/96	16.5	μg/l		16.4
Undifferentiated Chinle	Zinc	Total	KMW11	10/24/98	40	μg/l	JD	16.4
Painted Desert	Aluminum	Filtered	CMW25	10/24/98	209	μg/l	F	130
Painted Desert	Aluminum	Filtered	CMW25	10/24/98	2710	μg/l	JDF	130
Painted Desert	Aluminum	Filtered	CMW25	1/27/99	768	μg/l	F	130
Painted Desert	Aluminum	Total	CMW25	10/24/98	162000	μg/l	J	13000
Painted Desert	Aluminum	Total	CMW25	10/24/98	69100	μg/l	JD	13000
Painted Desert	Ammonia nitrogen	Total	CMW25	10/24/98	115	μg/l		27.2
Painted Desert	Ammonia nitrogen	Total	CMW25	10/24/98	138	μg/l	D	27.2
Painted Desert	Antimony	Filtered	CMW25	1/27/99	0.639	μg/l	FJP	0
Painted Desert	Arsenic	Total	CMW25	10/24/98	6.67	μg/l	J	4.87
Painted Desert	Barium	Filtered	CMW25	10/24/98	125	μg/l	JDF	58.8
Painted Desert	Barium	Filtered	CMW25	1/27/99	81.4	μg/l	F	58.8
Painted Desert	Barium	Total	CMW25	10/24/98	890	μg/l	J	122

•

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Painted Desert	Barium	Total	CMW25	10/24/98	279	µg/l	JD	122
Painted Desert	Beryllium	Total	CMW25	10/24/98	3.6	μg/1	J	0
Painted Desert	Beryllium	Total	CMW25	10/24/98	1.28	μg/l	JD	0
Painted Desert	Cadmium	Total	CMW25	10/24/98	0.398	μg/l	J	0
Painted Desert	Cadmium	Total	CMW25	10/24/98	0.269	μg/l	JD	0
Painted Desert	Chromium	Total	CMW25	10/24/98	180	μg/l	J	7.18
Painted Desert	Chromium	Total	CMW25	10/24/98	87.9	μg/l	JD	7.18
Painted Desert	Cobalt	Total	CMW25	10/24/98	37.2	μg/l		1.08
Painted Desert	Copper	Total	CMW25	10/24/98	37.7	μg/l	J	13.4
Painted Desert	Iron	Filtered	CMW25	10/24/98	69	μg/1	F	48.7
Painted Desert	Iron	Filtered	CMW25	10/24/98	955	μg/l	JDF	48.7
Painted Desert	Iron	Filtered	CMW25	1/27/99	276	μg/l	F	48.7
Painted Desert	Iron	Total	CMW25	10/24/98	64600	μg/l	J	6860
Painted Desert	Iron	Total	CMW25	10/24/98	28700	μg/l	JD	6860
Painted Desert	Lead	Total	CMW25	10/24/98	32.4	μg/l	J	2.39
Painted Desert	Lead	Total	CMW25	10/24/98	11.5	μg/l	Ъ	2.39
Painted Desert	Manganese	Filtered	CMW25	10/24/98	16	μg/1	JDF	14.1
Painted Desert	Manganese	Total	CMW25	10/24/98	1580	μg/l	J	194
Painted Desert	Manganese	Total	CMW25	10/24/98	482	μg/l	JD	194
Painted Desert	Nickel	Total	CMW25	10/24/98	95.5	μg/l	J	8.26
Painted Desert	Nickel	Total	CMW25	10/24/98	49.4	μg/l	JD	8.26
Painted Desert	Nitrite (as nitrite)	Total	CMW25	10/24/98	170	μg/l	J	12.9
Painted Desert	Nitrite (as nitrite)	Total	CMW25	10/24/98	142	μg/l	J	12.9
Painted Desert	Thallium	Total	CMW25	10/24/98	0.233	μg/l		0
Painted Desert	Thallium	Total	CMW25	10/24/98	0.17	μg/l	D	0
Painted Desert	Vanadium	Total	CMW25	10/24/98	170	μg/l	J	65
Painted Desert	Vanadium	Total	CMW25	10/24/98	69.4	μg/l	л	65
Painted Desert	Zinc	Filtered	CMW25	1/27/99	13.8	μg/l	FJP	8.75
Painted Desert	Zinc	Total	CMW25	10/24/98	693	μg/l	J	16.4
Painted Desert	Zinc	Total	CMW25	10/24/98	143	μg/l	JD	16.4

۲

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Aluminum	Filtered	CMW16	10/22/96	208	μg/l	F	130
Sonsela Sandstone	Aluminum	Filtered	CMW21	10/23/98	470	μg/l	JF	130
Sonsela Sandstone	Aluminum	Filtered	CMW21	1/27/99	1850	μg/l	F	130
Sonsela Sandstone	Aluminum	Filtered	CMW22	2/2/99	318	μg/l	FJ	130
Sonsela Sandstone	Aluminum	Filtered	CMW23	1/26/99	426	μg/l	F	130
Sonsela Sandstone	Aluminum	Total	CMW16	2/10/97	44000	μg/l	D	13000
Sonsela Sandstone	Aluminum	Total	CMW16	2/10/97	46200	μg/l		13000
Sonsela Sandstone	Aluminum	Total	CMW21	1/27/99	92700	μg/l		13000
Sonsela Sandstone	Aluminum	Total	CMW22	1/29/99	22600	μg/l		13000
Sonsela Sandstone	Aluminum	Total	CMW23	10/22/98	46700	μg/l		13000
Sonsela Sandstone	Aluminum	Total	CMW23	1/26/99	18200	μg/l		13000
Sonsela Sandstone	Ammonia nitrogen	Filtered	CMW21	10/23/98	456	μg/i	JF	27.9
Sonsela Sandstone	Ammonia nitrogen	Filtered	CMW23	10/23/98	35.4	μg/l	F	27.9
Sonsela Sandstone	Ammonia nitrogen	Filtered	CMW23	1/26/99	95.1	μg/l	F	27.9
Sonsela Sandstone	Ammonia nitrogen	Total	CMW16	10/21/98	64.7	μg/l		27.2
Sonsela Sandstone	Ammonia nitrogen	Total	CMW21	10/23/98	381	μg/l	J	27.2
Sonsela Sandstone	Ammonia nitrogen	Total	CMW23	10/22/98	199	μg/l		27.2
Sonsela Sandstone	Ammonia nitrogen	Total	CMW23	1/26/99	169	μg/l		27.2
Sonsela Sandstone	Antimony	Filtered	CMW16	1/22/99	10.2	μg/l	F	0
Sonsela Sandstone	Antimony	Filtered	CMW21	10/23/98	0.777	μg/1	F	0
Sonsela Sandstone	Antimony	Filtered	CMW22	10/27/98	0.631	μg/l	F	0
Sonsela Sandstone	Antimony	Filtered	CMW23	10/23/98	0.706	μg/l	F	0
Sonsela Sandstone	Antimony	Filtered	CMW23	1/26/99	0.654	μg/l	FJP	0
Sonsela Sandstone	Antimony	Total	CMW16	1/22/99	23.3	μg/l		1.97
Sonsela Sandstone	Arsenic	Filtered	CMW21	10/23/98	4.83	μg/l	F	4.14
Sonsela Sandstone	Arsenic	Filtered	CMW22	10/27/98	5.3	μg/l	JF	4.14
Sonsela Sandstone	Arsenic	Filtered	CMW23	10/23/98	10.1	μg/l	F	4.14
Sonsela Sandstone	Arsenic	Total	CMW23	10/22/98	10.4	μg/l	J	4.87
Sonsela Sandstone	Arsenic	Total	CMW23	1/26/99	9.11	μg/l	JP	4.87
Sonsela Sandstone	Barium	Filtered	CMW16	10/22/96	82.8	μg/l	F	58.8

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Barium	Filtered	CMW16	2/10/97	72.8	µg/l	DF	58.8
Sonsela Sandstone	Barium	Filtered	CMW16	2/10/97	74.3	μg/1	F	58.8
Sonsela Sandstone	Barium	Filtered	CMW16	10/21/98	72.3	μg/l	JF	58.8
Sonsela Sandstone	Barium	Filtered	CMW16	1/22/99	72.9	μg/l	F	58.8
Sonsela Sandstone	Barium	Filtered	CMW21	1/27/99	132	μg/l	F	58.8
Sonsela Sandstone	Barium	Filtered	CMW22	10/27/98	133	μg/1	JF	58.8
Sonsela Sandstone	Barium	Filtered	CMW22	2/2/99	174	μg/l	F	58.8
Sonsela Sandstone	Barium	Total	CMW16	10/22/96	310	μg/l		122
Sonsela Sandstone	Barium	Total	CMW16	2/10/97	440	μg/l	D	122
Sonsela Sandstone	Barium	Total	CMW16	2/10/97	430	μg/l		122
Sonsela Sandstone	Barium	Total	CMW16	10/21/98	498	µg/l	J	122
Sonsela Sandstone	Barium	Total	CMW16	1/22/99	228	μg/l		122
Sonsela Sandstone	Barium	Total	CMW21	10/23/98	153	μg/l	J	122
Sonsela Sandstone	Barium	Total	CMW21	1/27/99	884	μg/l		122
Sonsela Sandstone	Barium	Total	CMW22	10/24/98	183	µg/l	J	122
Sonsela Sandstone	Barium	Total	CMW22	1/29/99	179	μg/l		122
Sonsela Sandstone	Barium	Total	CMW23	10/22/98	160	µg/l		122
Sonsela Sandstone	Beryllium	Total	CMW16	10/22/96	0.309	µg/l		0
Sonsela Sandstone	Beryllium	Total	CMW16	2/10/97	0.966	µg/l	D	0
Sonsela Sandstone	Beryllium	Total	CMW16	2/10/97	1.26	µg/l		0
Sonsela Sandstone	Beryllium	Total	CMW16	10/21/98	0.259	μg/l	J	0
Sonsela Sandstone	Beryllium	Total	CMW21	10/23/98	0.378	μg/l	J	0
Sonsela Sandstone	Beryllium	Total	CMW21	1/27/99	2.27	μg/l	JP	0
Sonsela Sandstone	Beryllium	Total	CMW22	10/24/98	0.48	μg/l	J	0
Sonsela Sandstone	Beryllium	Total	CMW22	1/29/99	0.583	μg/l	JP	0
Sonsela Sandstone	Beryllium	Total	CMW23	10/22/98	1.51	μg/l	J	0
Sonsela Sandstone	Beryllium	Total	CMW23	1/26/99	0.516	μg/l	JP	0
Sonsela Sandstone	Cadmium	Filtered	CMW23	10/23/98	0.148	μg/l	F	0
Sonsela Sandstone	Cadmium	Total	CMW21	10/23/98	0.133	μg/l	J	0
Sonsela Sandstone	Cadmium	Total	CMW21	1/27/99	0.145	μg/l	JP	0

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Cadmium	Total	CMW22	10/24/98	0.131	μg/i	J	0
Sonsela Sandstone	Cadmium	Total	CMW23	10/22/98	0.544	μg/l	J	0
Sonsela Sandstone	Chromium	Filtered	CMW23	10/23/98	44.2	μg/l	JF	3.02
Sonsela Sandstone	Chromium	Filtered	CMW23	1/26/99	24.8	μg/l	F	3.02
Sonsela Sandstone	Chromium	Total	CMW21	10/23/98	16.8	μg/l	J	7.18
Sonsela Sandstone	Chromium	Total	CMW21	1/27/99	66.1	μg/l		7.18
Sonsela Sandstone	Chromium	Total	CMW22	1/29/99	11.2	μg/l		7.18
Sonsela Sandstone	Chromium	Total	CMW23	10/22/98	65.1	μg/l		7.18
Sonsela Sandstone	Chromium	Total	CMW23	1/26/99	52.5	μg/i		7.18
Sonsela Sandstone	Cobalt	Total	CMW16	10/22/96	2.33	μg/l		1.08
Sonsela Sandstone	Cobalt	Total	CMW16	2/10/97	2.59	μg/l	D	1.08
Sonsela Sandstone	Cobalt	Total	CMW16	2/10/97	2.7	μg/l	~	1.08
Sonsela Sandstone	Copper	Filtered	CMW23	1/26/99	8.3	μg/l	FJP	2.32
Sonsela Sandstone	Copper	Total	CMW16	1/22/99	14.9	μg/l	JP	13.4
Sonsela Sandstone	Copper	Total	CMW23	10/22/98	24.9	μg/l		13.4
Sonsela Sandstone	Fluoride	Filtered	CMW16	1/22/99	1310	μg/l	F	1160
Sonsela Sandstone	Fluoride	Total	CMW23	1/26/99	2780	μg/l		0
Sonsela Sandstone	HMX	Total	CMW16	10/22/96	7.86	μg/l	С	0
Sonsela Sandstone	HMX	Total	CMW16	2/10/97	6.39	μg/l	С	0
Sonsela Sandstone	HMX	Total	CMW16	2/10/97	7.12	μg/l	CVD	0
Sonsela Sandstone	HMX	Total	CMW16	10/21/98	8.09	μg/l	С	0
Sonsela Sandstone	HMX	Total	CMW16	1/22/99	7.63	μg/l		0
Sonsela Sandstone	Iron	Filtered	CMW16	10/22/96	93.9	μg/l	F	48.7
Sonsela Sandstone	Iron	Filtered	CMW21	10/23/98	173	μg/1	JF	48.7
Sonsela Sandstone	Iron	Filtered	CMW21	1/27/99	704	μg/l	F	48.7
Sonsela Sandstone	Iron	Filtered	CMW22	2/2/99	121	μg/l	F	48.7
Sonsela Sandstone	Iron	Filtered	CMW23	1/26/99	152	μg/l	F	48.7
Sonsela Sandstone	Iron	Total	CMW16	2/10/97	18400	μg/l	D	6860
Sonsela Sandstone	Iron	Total	CMW16	2/10/97	19100	μg/l		6860
Sonsela Sandstone	Iron	Total	CMW21	1/27/99	38300	μg/1		6860

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Iron	Total	CMW22	1/29/99	7770	μg/l		6860
Sonsela Sandstone	Iron	Total	CMW23	10/22/98	19700	μg/l		6860
Sonsela Sandstone	Lead	Filtered	CMW22	10/27/98	0.785	μg/l	JF	0.73
Sonsela Sandstone	Lead	Total	CMW16	2/10/97	7.47	μg/l	D	2.39
Sonsela Sandstone	Lead	Total	CMW16	2/10/97	7.88	μg/i		2.39
Sonsela Sandstone	Lead	Total	CMW16	10/21/98	3.24	μg/l	J	2.39
Sonsela Sandstone	Lead	Total	CMW16	1/22/99	2.98	μg/l	JP	2.39
Sonsela Sandstone	Lead	Total	CMW21	10/23/98	2.84	μg/l	J	2.39
Sonsela Sandstone	Lead	Total	CMW21	1/27/99	18.6	μg/l		2.39
Sonsela Sandstone	Lead	Total	CMW22	10/24/98	3.46	μg/l	J	2.39
Sonsela Sandstone	Lead	Total	CMW22	1/29/99	5.23	μg/l		2.39
Sonsela Sandstone	Lead	Total	CMW23	10/22/98	40.4	μg/1	J	2.39
Sonsela Sandstone	Lead	Total	CMW23	1/26/99	2.96	μg/l	JP	2.39
Sonsela Sandstone	Manganese	Filtered	CMW16	10/22/96	22.5	µg/l	F	14.1
Sonsela Sandstone	Manganese	Filtered	CMW22	2/2/99	50.9	μg/l	F	14.1
Sonsela Sandstone	Manganese	Total	CMW16	10/22/96	220	μg/l		194
Sonsela Sandstone	Manganese	Total	CMW16	2/10/97	290	μg/l	D	194
Sonsela Sandstone	Manganese	Total	CMW16	2/10/97	290	μg/l		194
Sonsela Sandstone	Manganese	Total	CMW21	1/27/99	1060	µg/l		194
Sonsela Sandstone	Manganese	Total	CMW22	1/29/99	289	μg/l		194
Sonsela Sandstone	Manganese	Total	CMW23	10/22/98	383	µg/l		194
Sonsela Sandstone	Mercury	Filtered	CMW23	10/23/98	1.09	μg/l	F	0.133
Sonsela Sandstone	Mercury	Total	CMW23	10/22/98	0.837	μg/l		0.0883
Sonsela Sandstone	Nickel	Filtered	CMW16	10/22/96	6.83	μg/l	F	2.41
Sonsela Sandstone	Nickel	Filtered	CMW21	1/27/99	29.7	μg/l	FJP	2.41
Sonsela Sandstone	Nickel	Total	CMW21	1/27/99	34.8	μg/1	JP	8.26
Sonsela Sandstone	Nickel	Total	CMW23	10/22/98	21.2	μg/l		8.26
Sonsela Sandstone	Nitrite (as nitrite)	Total	CMW21	10/23/98	13.4	μg/1		12.9
Sonsela Sandstone	Nitrite (as nitrite)	Total	CMW23	10/23/98	18.6	μg/1		12.9
Sonsela Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW16	10/21/98	304	μg/1	J	168

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
O		T-4-1	CLONIC	1/00/00	416	41 – (1		169
Sonsela Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total Total	CMW16 CMW23	1/22/99	416 489	μg/l		168
Sonsela Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW23 CMW16	1/26/99 10/22/96	489	μg/l	C	168
Sonsela Sandstone	RDX	Total				μg/l	C	0
Sonsela Sandstone	RDX	Total	CMW16	2/10/97	13.2	μg/1	C	0
Sonsela Sandstone	RDX	Total	CMW16	2/10/97	14.5	μg/]	CVD	0
Sonsela Sandstone	RDX	Total	CMW16	10/21/98	15.8	μg/l	С	0
Sonsela Sandstone	RDX	Total	CMW16	1/22/99	12.4	μg/l	_	0
Sonsela Sandstone	Selenium	Filtered	CMW22	10/27/98	18.9	μg/l	F	9.84
Sonsela Sandstone	Selenium	Filtered	CMW23	10/23/98	28.1	μg/l	F	9.84
Sonsela Sandstone	Selenium	Filtered	CMW23	1/26/99	15.4	µg/l	F	9.84
Sonsela Sandstone	Selenium	Total	CMW23	10/22/98	20.2	µg/l		11.4
Sonsela Sandstone	Selenium	Total	CMW23	1/26/99	17	μg/l		11.4
Sonsela Sandstone	Silver	Total	CMW16	1/22/99	1.68	μg/1	JP	1.61
Sonsela Sandstone	Thallium	Filtered	CMW23	10/23/98	0.217	μg/l	F	0
Sonsela Sandstone	Thallium	Total	CMW23	10/22/98	0.263	µg/l		0
Sonsela Sandstone	Vanadium	Total	CMW21	1/27/99	75.8	μg/l		65
Sonsela Sandstone	Zinc	Filtered	CMW16	10/22/96	14.3	μg/l	F	8.75
Sonsela Sandstone	Zinc	Filtered	CMW21	1/27/99	21.1	μg/l	F	8.75
Sonsela Sandstone	Zinc	Filtered	CMW23	1/26/99	28.9	μg/l	F	8.75
Sonsela Sandstone	Zinc	Total	CMW16	10/21/98	65.3	μg/l	J	16.4
Sonsela Sandstone	Zinc	Total	CMW16	1/22/99	23.8	μg/l		16.4
Sonsela Sandstone	Zinc	Total	CMW21	10/23/98	63.4	μg/l	J	16.4
Sonsela Sandstone	Zinc	Total	CMW21	1/27/99	137	μg/l		16.4
Sonsela Sandstone	Zinc	Total	CMW22	10/24/98	58.4	μg/l	J	16.4
Sonsela Sandstone	Zinc	Total	CMW22	1/29/99	62	μg/l		16.4
Sonsela Sandstone	Zinc	Total	CMW23	10/22/98	225	μg/l		16.4
Sonsela Sandstone	Zinc	Total	CMW23	1/26/99	46.7	μg/l		16.4
Entrada Sandstone	Aluminum	Total	KMW10	2/11/97	14000	μg/l		13000
Entrada Sandstone	Ammonia nitrogen	Filtered	KMW10	10/21/98	94.1	μg/l	F	27.9
Entrada Sandstone	Ammonia nitrogen	Filtered	KMW10	1/25/99	95.9	μg/l	F	27.9

1

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Entrada Sandstone	Ammonia nitrogen	Total	KMW10	10/21/98	1040	μg/l	J	27.2
Entrada Sandstone	Ammonia nitrogen	Total	KMW10	1/25/99	571	μg/l	-	27.2
Entrada Sandstone	Barium	Total	KMW10	2/11/97	152	μg/l		122
Entrada Sandstone	Beryllium	Total	KMW10	2/11/97	0.652	μg/l		C
Entrada Sandstone	Beryllium	Total	KMW10	10/21/98	0.296	μg/l	J	0
Entrada Sandstone	Beryllium	Total	KMW10	1/25/99	0.363	μg/l	JP	0
Entrada Sandstone	Cadmium	Total	KMW10	10/29/96	0.111	μg/l		0
Entrada Sandstone	Cadmium	Total	KMW10	2/11/97	0.223	μg/I		0
Entrada Sandstone	Cadmium	Total	KMW10	10/21/98	0.358	μg/l	J	C
Entrada Sandstone	Cadmium	Total	KMW10	1/25/99	0.138	μg/l	JP	0
Entrada Sandstone	Chromium	Filtered	KMW10	10/29/96	5.2	μg/l	F	3.02
Entrada Sandstone	Chromium	Total	KMW10	2/11/97	8.84	μg/l		7.18
Entrada Sandstone	Chromium	Total	KMW10	1/25/99	8.66	μg/1	ЛЬ	7.18
Entrada Sandstone	Cobalt	Total	KMW 10	10/29/96	1.16	μg/l		1.08
Entrada Sandstone	Cobalt	Total	KMW10	2/11/97	6.53	μg/l		1.08
Entrada Sandstone	Copper	Filtered	KMW10	1/25/99	5.78	μg/l	FJP	2.32
Entrada Sandstone	Iron	Total	KMW10	2/11/97	8050	μg/l		6860
Entrada Sandstone	Iron	Total	KMW10	10/21/98	8530	μg/l	J	6860
Entrada Sandstone	Lead	Total	KMW10	2/11/97	8.38	μg/1		2.39
Entrada Sandstone	Lead	Total	KMW10	10/21/98	5.24	μg/l	J	2.39
Entrada Sandstone	Manganese	Filtered	KMW10	10/29/96	14.4	μg/l	F	14.1
Entrada Sandstone	Manganese	Filtered	KMW10	1/25/99	92.6	μg/1	F	14.1
Entrada Sandstone	Manganese	Total	KMW10	2/11/97	230	μg/l		194
Entrada Sandstone	Manganese	Total	KMW10	10/21/98	229	μg/l	J	194
Entrada Sandstone	Nickel	Filtered	KMW10	10/29/96	3.77	μg/1	F	2.41
Entrada Sandstone	Nickel	Filtered	KMW10	2/11/97	5.51	μg/1	F	2.41
Entrada Sandstone	Nickel	Total	KMW10	2/11/97	12.7	μg/l		8.26
Entrada Sandstone	Nitrite (as nitrite)	Total	KMW10	10/21/98	13.8	μg/l		12.9
Entrada Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	KMW10	10/21/98	8050	μg/l	J	168
Entrada Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	KMW10	1/25/99	7320	μg/1		168

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

1

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Entrada Sandstone	Selenium	Filtered	KMW10	10/29/96	21.9	μg/l	F	9.84
Entrada Sandstone	Selenium	Filtered	KMW10	2/11/97	20.6	μg/l	F	9.84
Entrada Sandstone	Selenium	Filtered	KMW10	10/21/98	24.4	μg/l	F	9.84
Entrada Sandstone	Selenium	Filtered	KMW10	1/25/99	20.8	μg/l	F	9.84
Entrada Sandstone	Selenium	Total	KMW10	10/29/96	22.1	μg/l		11.4
Entrada Sandstone	Selenium	Total	KMW10	2/11/97	20.2	μg/l		11.4
Entrada Sandstone	Selenium	Total	KMW10	10/21/98	23.8	μg/1		11.4
Entrada Sandstone	Selenium	Total	KMW10	1/25/99	17.6	μg/l		11.4
Entrada Sandstone	Thallium	Total	KMW10	2/11/97	0.127	μg/l		0
Entrada Sandstone	Zinc	Filtered	KMW10	1/25/99	28.2	μg/l	F	8.75
Entrada Sandstone	Zinc	Total	KMW10	2/11/97	44.7	μg/l		16.4
Entrada Sandstone	Zinc	Total	KMW10	10/21/98	53.2	μg/l	J	16.4
Entrada Sandstone	Zinc	Total	KMW10	1/25/99	21.5	μg/l		16.4

 $\mu g/l = micrograms per liter.$

Flagging Codes:

- C Analysis was confirmed.
- D Duplicate analysis.
- F Sample filtered prior to analysis.
- J Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

Q - Sample interference obscured peak of interest.

V - Sample subjected to unusual storage/preservation conditions.

PMC

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
Undifferentiated Chinle	2,4-Dinitrotoluene	Total	CMW18	10/20/98	0.103	μg/i	С	0	0.099
Undifferentiated Chinle	2-Amino-4,6-dinitrotoluene	Total	CMW18	10/19/96	2.49	μg/l	Q	0	0.099
Undifferentiated Chinle	2-Amino-4,6-dinitrotoluene	Total	CMW18	2/11/97	4.39	μg/l	Q	0	0.099
Undifferentiated Chinle	2-Amino-4,6-dinitrotoluene	Total	CMW18	10/20/98	3.23	μg/l	C	0	0.099
Undifferentiated Chinle	2-Amino-4,6-dinitrotoluene	Total	CMW18	1/27/99	2.94	μg/l		0	0.099
Undifferentiated Chinle	4-Amino-2,6-dinitrotoluene	Total	CMW17	2/11/97	0.224	μg/I	С	0	0.099
Undifferentiated Chinle	4-Amino-2,6-dinitrotoluene	Total	CMW18	10/19/96	3.18	μg/l	Q	0	0.099
Undifferentiated Chinle	4-Amino-2,6-dinitrotoluene	Total	CMW18	2/11/97	5.95	μg/1	Q	0	0.099
Undifferentiated Chinle	4-Amino-2,6-dinitrotoluene	Total	CMW18	10/20/98	4.19	μg/l	С	0	0.099
Undifferentiated Chinle	4-Amino-2,6-dinitrotoluene	Total	CMW18	1/27/99	3.81	μg/l		0	0.099
Undifferentiated Chinle	4-Amino-2,6-dinitrotoluene	Total	KMW11	2/11/97	0.259	μg/l	С	0	0.099
Undifferentiated Chinle	Aluminum	Total	CMW07	2/10/97	52300	μg/l		13000	37000
Undifferentiated Chinle	Aluminum	Total	CMW17	1/28/99	88200	μg/l		13000	37000
Undifferentiated Chinle	Aluminum	Total	CMW19	2/10/97	179000	μg/I		13000	37000
Undifferentiated Chinle	Aluminum	Total	CMW19	10/22/98	40900	μg/1	J	13000	37000
Undifferentiated Chinle	Aluminum	Total	CMW19	1/25/99	42600	μg/l		13000	37000
Undifferentiated Chinle	Aluminum	Total	CMW19	1/25/99	73900	μg/l	D	13000	37000
Undifferentiated Chinle	Aluminum	Total	KMW11	10/24/96	61900	µg/l		13000	37000
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW10	1/25/99	557	μg/l	F	27.9	174
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW14	10/20/98	1500	μg/l	JF	27.9	174
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW14	1/25/99	312	μg/l	F	27.9	174
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW19	10/22/98	315	μg/l	JF	27.9	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW10	1/26/99	514	μg/l		27.2	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW14	10/20/98	1580	μg/l	J	27.2	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW14	1/25/99	358	μg/l		27.2	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW17	10/22/98	251	μg/l		27.2	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW19	10/22/98	452	μg/l		27.2	174
Undifferentiated Chinle	Cadmium	Filtered	CMW07	1/21/99	6.81	μg/l	F	0	5
Undifferentiated Chinle	Chromium	Filtered	CMW10	2/11/97	181	μg/l	F	3.02	100
Undifferentiated Chinle	Chromium	Filtered	CMW10	10/26/98	270	μg/l	F	3.02	100
Undifferentiated Chinle	Chromium	Filtered	CMW10	1/23/99	199	μg/l	F	3.02	100
Undifferentiated Chinle	Chromium	Filtered	CMW14	10/20/98	142	μg/l	JF	3.02	100

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
Undifferentiated Chinle	Chromium	Total	CMW10	2/11/97	173	μg/ì		7.18	100
Undifferentiated Chinle	Chromium	Total	CMW10	10/20/98	282	μg/l	J	7.18	100
Undifferentiated Chinle	Chromium	Total	CMW10	1/23/99	174	μg/l		7.18	100
Undifferentiated Chinle	Chromium	Total	CMW14	10/20/98	113	μg/l	J	7.18	100
Undifferentiated Chinle	Iron	Total	CMW04	10/22/96	15200	μg/l		6860	11000
Undifferentiated Chinle	Iron	Total	CMW04	10/22/96	15200	μg/l	J	6860	11000
Undifferentiated Chinle	Iron	Total	CMW07	2/10/97	27800	μg/l		6860	11000
Undifferentiated Chinle	Iron	Total	CMW17	1/28/99	46300	μg/l		6860	11000
Undifferentiated Chinle	Iron	Total	CMW18	10/20/98	14500	μg/l	J	6860	11000
Undifferentiated Chinle	Iron	Total	CMW19	2/10/97	101000	µg/l		6860	11000
Undifferentiated Chinle	Iron	Total	CMW19	10/22/98	18900	μg/l	J	6860	11000
Undifferentiated Chinle	Iron	Total	CMW19	1/25/99	18800	μg/l		6860	11000
Undifferentiated Chinle	Iron	Total	CMW19	1/25/99	36100	µg/l	D	6860	11000
Undifferentiated Chinle	Iron	Total	KMW 11	10/24/96	36300	μg/l		6860	11000
Undifferentiated Chinle	Iron	Total	KMW11	2/11/97	17900	μg/l		6860	11000
Undifferentiated Chinle	Iron	Total	KMW11	10/24/98	13600	μg/l	J	6860	11000
Undifferentiated Chinle	Iron	Total	KMW11	10/24/98	20600	μg/l	JD	6860	11000
Undifferentiated Chinle	Lead	Total	CMW19	2/10/97	25.9	μg/l		2.39	15
Undifferentiated Chinle	RDX	Total	CMW18	10/19/96	120	μg/l	С	0	0.61
Undifferentiated Chinle	RDX	Total	CMW18	2/11/97	170	µg/l	С	0	0.61
Undifferentiated Chinle	RDX	Total	CMW18	10/20/98	100	µg/l	С	0	0.61
Undifferentiated Chinle	RDX	Total	CMW18	1/27/99	81.3	μg/l		0	0.61
Undifferentiated Chinle	Selenium	Filtered	CMW10	10/26/98	82.1	μg/l	F	9.84	50
Undifferentiated Chinle	Selenium	Total	CMW10	10/20/98	84.5	μg/l		11.4	50

Notes:

PMC

 $\mu g/l = micrograms per liter.$

Flagging Codes:

C - Analysis was confirmed.

D - Duplicate analysis.

F - Sample filtered prior to analysis.

J - Value is estimated.

Q - Sample interference obscured peak of interest.

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration	Closure Performance Standards Contentration
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW10	1/25/99	557	µg/l	F	27.9		174
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW14	10/20/98	1500	μg/l	JF	27.9	174	174
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW14	1/25/99	312	μg/l	F	27.9	174	174
Undifferentiated Chinle	Ammonia nitrogen	Filtered	CMW19	10/22/98	315	μgЛ	JF	27.9	174	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW10	1/26/99	514	μg/l		27.2	174	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW14	10/20/98	1580	μg/l	J	27.2	174	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW14	1/25/99	358	μg/l		27.2	174	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW17	10/22/98	251	μg/l		27.2	174	174
Undifferentiated Chinle	Ammonia nitrogen	Total	CMW19	10/22/98	452	μg/l		27.2	174	174
Undifferentiated Chinle	Cadmium	Filtered	CMW07	1/21/99	6.81	μg/I	F	0	5	5
Undifferentiated Chinle	Chromium	Filtered	CMW10	2/11/97	181	μg/I	F	3.02	100	100
Undifferentiated Chinle	Chromium	Filtered	CMW10	10/26/98	270	μg/l	F	3.02	100	100
Undifferentiated Chinle	Chromium	Filtered	CMW10	1/23/99	199	μgЛ	F	3.02	100	100
Undifferentiated Chinle	Chromium	Filtered	CMW14	10/20/98	142	μg/l	JF	3.02	100	100
Undifferentiated Chinle	Chromium	Total	CMW10	2/11/97	173	μg/l		7.18	100	100
Undifferentiated Chinle	Chromium	Total	CMW10	10/20/98	282	μg/l	J	7.18	100	100
Undifferentiated Chinle	Chromium	Total	CMW10	1/23/99	174	μg/l		7.18	100	100
Undifferentiated Chinle	Chromium	Total	CMW14	10/20/98	113	μg/l	J	7.18	100	100
Undifferentiated Chinle	Lead	Total	CMW19	2/10/97	25.9	μg/l		2.39	15	15
Undifferentiated Chinle	RDX	Total	CMW18	10/19/96	120	μg/l	С	0	0.61	61
Undifferentiated Chinle	RDX	Total	CMW18	2/11/97	170	μg/I	С	0	0.61	61
Undifferentiated Chinle	RDX	Total	CMW18	10/20/98	100	µg/l	С	0	0.61	61
	RDX	Total	CMW18	1/27/99	81.3	μg/l		0	0.61	61
Undifferentiated Chinle		Filtered	CMW10	10/26/98	82.1	μg/l	F	9.84	50	50
	+	Total	CMW10	10/20/98	84.5	μg/l	-	11.4	50	50

Notes:

µg/l = micrograms per liter.

Flagging Codes:

C - Analysis was confirmed.

F - Sample filtered prior to analysis.

J - Value is estimated.

1

Table 3-25 Samples that Exceeded Background Painted Desert Member Current OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Painted Desert	Aluminum	Filtered	CMW25	10/24/98	209	μg/l	F	130
Painted Desert	Aluminum	Filtered	CMW25	10/24/98	2710	μg/1	JDF	130
Painted Desert	Aluminum	Filtered	CMW25	1/27/99	768	μg/l	F	130
Painted Desert	Aluminum	Total	CMW25	10/24/98	162000	μg/1	J	13000
Painted Desert	Aluminum	Total	CMW25	10/24/98	69100	μg/1	Ъ	13000
Painted Desert	Ammonia nitrogen	Total	CMW25	10/24/98	115	μg/l		27.2
Painted Desert	Ammonia nitrogen	Total	CMW25	10/24/98	138	μg/l	D	27.2
Painted Desert	Antimony	Filtered	CMW25	1/27/99	0.639	μg/l	FJP	0
Painted Desert	Arsenic	Total	CMW25	10/24/98	6.67	μg/1	J	4.87
Painted Desert	Barium	Filtered	CMW25	10/24/98	125	μg/l	JDF	58.8
Painted Desert	Barium	Filtered	CMW25	1/27/99	81.4	μg/1	F	58.8
Painted Desert	Barium	Total	CMW25	10/24/98	890	μg/l	J	122
Painted Desert	Barium	Total	CMW25	10/24/98	279	μg/l	JD	122
Painted Desert	Beryllium	Total	CMW25	10/24/98	3.6	µg/l	J	0
Painted Desert	Beryllium	Total	CMW25	10/24/98	1.28	µg/l	JD	0
Painted Desert	Cadmium	Total	CMW25	10/24/98	0.398	μg/l	J	0
Painted Desert	Cadmium	Total	CMW25	10/24/98	0.269	μg/l	JD	0
Painted Desert	Chromium	Total	CMW25	10/24/98	180	μg/l	J	7.18
Painted Desert	Chromium	Total	CMW25	10/24/98	87.9	μg/l	JD	7.18
Painted Desert	Cobalt	Total	CMW25	10/24/98	37.2	μg/l		1.08
Painted Desert	Copper	Total	CMW25	10/24/98	37.7	µg/l	J	13.4
Painted Desert	Iron	Filtered	CMW25	10/24/98	69	μg/l	F	48.7
Painted Desert	Iron	Filtered	CMW25	10/24/98	955	μg/1	JDF	48.7
Painted Desert	Iron	Filtered	CMW25	1/27/99	276	μg/1	F	48.7
Painted Desert	Iron	Total	CMW25	10/24/98	64600	μg/1	J	6860
Painted Desert	Iron	Total	CMW25	10/24/98	28700	μg/l	JD	6860
Painted Desert	Lead	Total	CMW25	10/24/98	32.4	μg/l	J	2.39
Painted Desert	Lead	Total	CMW25	10/24/98	11.5	μg/l	JD	2.39
Painted Desert	Manganese	Filtered	CMW25	10/24/98	16	μg/l	JDF	14,1
Painted Desert	Manganese	Total	CMW25	10/24/98	1580	μg/l	J	194

Table 3-25 Samples that Exceeded Background Painted Desert Member Current OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Painted Desert	Manganese	Total	CMW25	10/24/98	482	μg/l	JD	194
Painted Desert	Nickel	Total	CMW25	10/24/98	95.5	μg/l	J	8.26
Painted Desert	Nickel	Total	CMW25	10/24/98	49.4	μg/l	Ъ	8.26
Painted Desert	Nitrite (as nitrite)	Total	CMW25	10/24/98	170	μg/1	J	12.9
Painted Desert	Nitrite (as nitrite)	Total	CMW25	10/24/98	142	μg/l	J	12.9
Painted Desert	Thallium	Total	CMW25	10/24/98	0.233	μg/l		0
Painted Desert	Thallium	Total	CMW25	10/24/98	0.17	μg/l	D	0
Painted Desert	Vanadium	Total	CMW25	10/24/98	170	μg/i	J	65
Painted Desert	Vanadium	Total	CMW25	10/24/98	69.4	μg/l	ЛD	65
Painted Desert	Zinc	Filtered	CMW25	1/27/99	13.8	μg/l	FJP	8.75
Painted Desert	Zinc	Total	CMW25	10/24/98	693	μg/l	J	16.4
Painted Desert	Zinc	Total	CMW25	10/24/98	143	μg/l	JD	16.4

Notes:

 μ g/l = micrograms per liter.

Flagging Codes:

C - Analysis was confirmed.

D - Duplicate analysis.

F - Sample filtered prior to analysis.

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

Q - Sample interference obscured peak of interest.

V - Sample subjected to unusual storage/preservation conditions.

PMC

Table 3-26 Samples that Exceeded Screening Criteria Painted Desert Member Current OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
Painted Desert	Aluminum	Total	CMW25	10/24/98	162000	μg/l	J	13000	37000
Painted Desert	Aluminum	Total	CMW25	10/24/98	69100	μg/l	Ъ	13000	37000
Painted Desert	Chromium	Total	CMW25	10/24/98	180	μg/l	J	7.18	100
Painted Desert	Iron	Total	CMW25	10/24/98	64600	μg/l	J	6860	11000
Painted Desert	Iron	Total	CMW25	10/24/98	28700	μg/l	JD	6860	11000
Painted Desert	Lead	Total	CMW25	10/24/98	32.4	μg/l	J	2.39	15

Notes:

 $\mu g/l = micrograms$ per liter.

Flagging Codes:

C - Analysis was confirmed.

D - Duplicate analysis.

F - Sample filtered prior to analysis.

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

Q - Sample interference obscured peak of interest.

V - Sample subjected to unusual storage/preservation conditions.

Table 3-27 Samples that Exceeded Closure Performance Standards Painted Desert Member Current OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation		Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration	Closure Performance Standards Contentration
Painted Desert	Chromium		Total	CMW25	10/24/98	180	μg/l	J	7.18	100	100
Painted Desert	Lead		Total	CMW25	10/24/98	32.4	μg/l	J	2.39	15	15

Notes:

 $\mu g/l = micrograms per liter.$

Flagging Codes:

C - Analysis was confirmed.

D - Duplicate analysis.

F - Sample filtered prior to analysis.

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

Q - Sample interference obscured peak of interest.

V - Sample subjected to unusual storage/preservation conditions.

.

PMC

Table 3-28 Samples that Exceeded Background Sonsela Sandstone Member Current OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Aluminum	Filtered	CMW16	10/22/96	208	µg/l	F	130
Sonsela Sandstone	Aluminum	Filtered	CMW21	10/23/98	470	μg/l	JF	130
Sonsela Sandstone	Aluminum	Filtered	CMW21	1/27/99	1850	μg/l	F	130
Sonsela Sandstone	Aluminum	Filtered	CMW22	2/2/99	318	μg/l	FJ	130
Sonsela Sandstone	Aluminum	Filtered	CMW23	1/26/99	426	μg/1	F	130
Sonsela Sandstone	Aluminum	Total	CMW16	2/10/97	44000	μg/l	D	13000
Sonsela Sandstone	Aluminum	Total	CMW16	2/10/97	46200	μg/l		13000
Sonsela Sandstone	Aluminum	Total	CMW21	1/27/99	92700	μg/l		13000
Sonsela Sandstone	Aluminum	Total	CMW22	1/29/99	22600	μg/l		13000
Sonsela Sandstone	Aluminum	Total	CMW23	10/22/98	46700	μg/l		13000
Sonsela Sandstone	Aluminum	Total	CMW23	1/26/99	18200	μg/l		13000
Sonsela Sandstone	Ammonia nitrogen	Filtered	CMW21	10/23/98	456	μg/l	JF	27.9
Sonsela Sandstone	Ammonia nitrogen	Filtered	CMW23	10/23/98	35.4	μg/l	F	27.9
Sonsela Sandstone	Ammonia nitrogen	Filtered	CMW23	1/26/99	95.1	μg/l	F	27.9
Sonsela Sandstone	Ammonia nitrogen	Total	CMW16	10/21/98	64.7	μg/l		27.2
Sonsela Sandstone	Ammonia nitrogen	Total	CMW21	10/23/98	381	μg/l	J	27.2
Sonsela Sandstone	Ammonia nitrogen	Total	CMW23	10/22/98	199	μg/l		27.2
Sonsela Sandstone	Ammonia nitrogen	Total	CMW23	1/26/99	169	μg/l		27.2
Sonsela Sandstone	Antimony	Filtered	CMW16	1/22/99	10.2	μg/l	F	0
Sonsela Sandstone	Antimony	Filtered	CMW21	10/23/98	0.777	μg/l	F	0
Sonsela Sandstone	Antimony	Filtered	CMW22	10/27/98	0.631	μg/l	F	0
Sonsela Sandstone	Antimony	Filtered	CMW23	10/23/98	0.706	μg/l	F	0
Sonsela Sandstone	Antimony	Filtered	CMW23	1/26/99	0.654	μg/l	FJP	0
Sonsela Sandstone	Antimony	Total	CMW16	1/22/99	23.3	μg/l		1.97
Sonsela Sandstone	Arsenic	Filtered	CMW21	10/23/98	4.83	μg/l	F	4.14
Sonsela Sandstone	Arsenic	Filtered	CMW22	10/27/98	5.3	μg/l	JF	4.14
Sonsela Sandstone	Arsenic	Filtered	CMW23	10/23/98	10.1	μg/l	F	4.14
Sonsela Sandstone	Arsenic	Total	CMW23	10/22/98	10.4	μg/l	J	4.87

ı.

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Arsenic	Total	CMW23	1/26/99	9.11	μg/l	JP	4.87
Sonsela Sandstone	Barium	Filtered	CMW16	10/22/96	82.8	μg/l	F	58.8
Sonsela Sandstone	Barium	Filtered	CMW16	2/10/97	72.8	μg/l	DF	58.8
Sonsela Sandstone	Barium	Filtered	CMW16	2/10/97	74.3	µg/l	F	58.8
Sonsela Sandstone	Barium	Filtered	CMW16	10/21/98	72.3	µg/l	JF	58.8
Sonsela Sandstone	Barium	Filtered	CMW16	1/22/99	72.9	μg/l	F	58.8
Sonsela Sandstone	Barium	Filtered	CMW21	1/27/99	132	μg/l	F	58.8
Sonsela Sandstone	Barium	Filtered	CMW22	10/27/98	133	μg/l	JF	58.8
Sonsela Sandstone	Barium	Filtered	CMW22	2/2/99	174	μg/l	F	58.8
Sonsela Sandstone	Barium	Total	CMW16	10/22/96	310	μg/i		122
Sonsela Sandstone	Barium	Total	CMW16	2/10/97	440	μg/l	D	122
Sonsela Sandstone	Barium	Total	CMW16	2/10/97	430	μg/l		122
Sonsela Sandstone	Barium	Total	CMW16	10/21/98	498	μg/l	J	122
Sonsela Sandstone	Barium	Total	CMW16	1/22/99	228	μg/l		122
Sonsela Sandstone	Barium	Total	CMW21	10/23/98	153	μg/l	J	122
Sonsela Sandstone	Barium	Total	CMW21	1/27/99	884	μg/l		122
Sonsela Sandstone	Barium	Total	CMW22	10/24/98	183	μg/l	Ĵ	122
Sonsela Sandstone	Barium	Total	CMW22	1/29/99	179	μg/l		122
Sonsela Sandstone	Barium	Total	CMW23	10/22/98	160	μg/l		122
Sonsela Sandstone	Beryllium	Total	CMW16	10/22/96	0.309	μg/l		0
Sonsela Sandstone	Beryllium	Total	CMW16	2/10/97	0.966	μg/l	D	0
Sonsela Sandstone	Beryllium	Total	CMW16	2/10/97	1.26	μg/l		0
Sonsela Sandstone	Beryllium	Total	CMW16	10/21/98	0.259	μg/i	J	0
Sonsela Sandstone	Beryllium	Total	CMW21	10/23/98	0.378	μg/l	J	0
Sonsela Sandstone	Beryllium	Total	CMW21	1/27/99	2.27	μg/l	JP	0
Sonsela Sandstone	Beryllium	Total	CMW22	10/24/98	0.48	μg/l	J	0 0
Sonsela Sandstone	Beryllium	Total	CMW22	1/29/99	0.583	μg/l	JP	0 0
Sonsela Sandstone	Beryllium	Total	CMW23	10/22/98	1.51	μg/l	J	0

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Table 3-28
Samples that Exceeded Background
Sonsela Sandstone Member
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Beryllium	Total	CMW23	1/26/99	0.516	μg/l	JP	0
Sonsela Sandstone	Cadmium	Filtered	CMW23	10/23/98	0.148	μg/l	F	0
Sonsela Sandstone	Cadmium	Total	CMW21	10/23/98	0.133	μg/l	J	0
Sonsela Sandstone	Cadmium	Total	CMW21	1/27/99	0.145	μg/l	JP	0
Sonsela Sandstone	Cadmium	Total	CMW22	10/24/98	0.131	μg/l	J	0
Sonsela Sandstone	Cadmium	Total	CMW23	10/22/98	0.544	μg/l	J	0
Sonsela Sandstone	Chromium	Filtered	CMW23	10/23/98	44.2	. σ μg/l	JF	3.02
Sonsela Sandstone	Chromium	Filtered	CMW23	1/26/99	24.8	μg/l	F	3.02
Sonsela Sandstone	Chromium	Total	CMW21	10/23/98	16.8	μg/l	J	7.18
Sonsela Sandstone	Chromium	Total	CMW21	1/27/99	66.1	μg/l		7.18
Sonsela Sandstone	Chromium	Total	CMW22	1/29/99	11.2	μg/l		7.18
Sonsela Sandstone	Chromium	Total	CMW23	10/22/98	65.1	μg/l		7.18
Sonsela Sandstone	Chromium	Total	CMW23	1/26/99	52.5	μg/l		7.18
Sonsela Sandstone	Cobalt	Total	CMW16	10/22/96	2.33	μg/l		1.08
Sonsela Sandstone	Cobalt	Total	CMW16	2/10/97	2.59	μg/l	D	1.08
Sonsela Sandstone	Cobalt	Total	CMW16	2/10/97	2.7	μg/l		1.08
Sonsela Sandstone	Copper	Filtered	CMW23	1/26/99	8.3	μg/l	FJP	2.32
Sonsela Sandstone	Copper	Total	CMW16	1/22/99	14.9	μg/l	JP	13.4
Sonsela Sandstone	Copper	Total	CMW23	10/22/98	24.9	μg/l		13.4
Sonsela Sandstone	Fluoride	Filtered	CMW16	1/22/99	1310	μg/l	F	1160
Sonsela Sandstone	Fluoride	Total	CMW23	1/26/99	2780	μg/l		0
Sonsela Sandstone	HMX	Total	CMW16	10/22/96	7.86	μg/l	С	0
Sonsela Sandstone	HMX	Total	CMW16	2/10/97	6.39	μg/l	С	0
Sonsela Sandstone	HMX	Total	CMW16	2/10/97	7.12	μg/l	CVD	0
Sonsela Sandstone	HMX	Total	CMW16	10/21/98	8.09	μg/l	С	0
Sonsela Sandstone	HMX	Total	CMW16	1/22/99	7.63	μg/l		0
Sonsela Sandstone	Iron	Filtered	CMW16	10/22/96	93.9	μg/l	F	48.7
Sonsela Sandstone	Iron	Filtered	CMW21	10/23/98	173	μg/l	JF	48.7

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Iron	Filtered	CMW21	1/27/99	704	<u>ц., //</u>	E.	49.7
Sonsela Sandstone	Iron	Filtered	CMW21 CMW22	2/2/99	704 121	µg/l	F F	48.7 48.7
Sonsela Sandstone	Iron	Filtered	CMW22 CMW23	1/26/99	121	µg/l	F F	48.7
Sonsela Sandstone	Iron	Total	CMW23 CMW16	2/10/97	18400	μg/l	г D	
Sonsela Sandstone			CMW16 CMW16			µg/l	D	6860
Sonsela Sandstone	Iron	Total		2/10/97	19100	µg/l		6860
	Iron	Total	CMW21	1/27/99	38300	μg/l		6860
Sonsela Sandstone	Iron	Total	CMW22	1/29/99	7770	μg/l		6860
Sonsela Sandstone	Iron	Total	CMW23	10/22/98	19700	µg/l		6860
Sonsela Sandstone	Lead	Filtered	CMW22	10/27/98	0.785	μg/l	JF	0.73
Sonsela Sandstone	Lead	Total	CMW16	2/10/97	7.47	μg/l	D	2.39
Sonsela Sandstone	Lead	Total	CMW16	2/10/97	7.88	μg/l		2.39
Sonsela Sandstone	Lead	Total	CMW16	10/21/98	3.24	μg/l	J	2.39
Sonsela Sandstone	Lead	Total	CMW16	1/22/99	2.98	μg/l	JP	2.39
Sonsela Sandstone	Lead	Total	CMW21	10/23/98	2.84	µg/l	J	2.39
Sonsela Sandstone	Lead	Total	CMW21	1/27/99	18.6	μg/l		2.39
Sonsela Sandstone	Lead	Total	CMW22	10/24/98	3.46	μg/l	J	2.39
Sonsela Sandstone	Lead	Total	CMW22	1/29/99	5.23	μg/l		2.39
Sonsela Sandstone	Lead	Total	CMW23	10/22/98	40.4	μg/l	J	2.39
Sonsela Sandstone	Lead	Total	CMW23	1/26/99	2.96	μg/l	JP	2.39
Sonsela Sandstone	Manganese	Filtered	CMW16	10/22/96	22.5	μg/l	F	14.1
Sonsela Sandstone	Manganese	Filtered	CMW22	2/2/99	50.9	μg/l	F	14.1
Sonsela Sandstone	Manganese	Total	CMW16	10/22/96	220	μg/l		194
Sonsela Sandstone	Manganese	Total	CMW16	2/10/97	290	μg/l	D	194
Sonsela Sandstone	Manganese	Total	CMW16	2/10/97	290	μg/l		194
Sonsela Sandstone	Manganese	Total	CMW21	1/27/99	1060	μg/l		194
Sonsela Sandstone	Manganese	Total	CMW22	1/29/99	289	μg/l		194
Sonsela Sandstone	Manganese	Total	CMW23	10/22/98	383	μg/l		194
Sonsela Sandstone	Mercury	Filtered	CMW23	10/23/98	1.09	μg/l	F	0.133

PMC

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Mercury	Total	CMW23	10/22/98	0.837	μg/l		0.0883
Sonsela Sandstone	Nickel	Filtered	CMW16	10/22/96	6.83	μg/l	F	2.41
Sonsela Sandstone	Nickel	Filtered	CMW21	1/27/99	29.7	μg/ł	FJP	2.41
Sonsela Sandstone	Nickel	Total	CMW21	1/27/99	34.8	μg/l	JP	8.26
Sonsela Sandstone	Nickel	Total	CMW23	10/22/98	21.2	μg/l		8.26
Sonsela Sandstone	Nitrite (as nitrite)	Total	CMW21	10/23/98	13.4	μg/l		12.9
Sonsela Sandstone	Nitrite (as nitrite)	Total	CMW23	10/23/98	18.6	μg/l		12.9
Sonsela Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW16	10/21/98	304	μg/l	J	168
Sonsela Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW16	1/22/99	416	μg/I		168
Sonsela Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	CMW23	1/26/99	489	μg/l		168
Sonsela Sandstone	RDX	Total	CMW16	10/22/96	17.3	μg/l	С	0
Sonsela Sandstone	RDX	Total	CMW16	2/10/97	13.2	μg/l	С	0
Sonsela Sandstone	RDX	Total	CMW16	2/10/97	14.5	μg/l	CVD	0
Sonsela Sandstone	RDX	Total	CMW16	10/21/98	15.8	μg/l	С	0
Sonsela Sandstone	RDX	Total	CMW16	1/22/99	12.4	μg/l		0
Sonsela Sandstone	Selenium	Filtered	CMW22	10/27/98	18.9	μg/l	F	9.84
Sonsela Sandstone	Selenium	Filtered	CMW23	10/23/98	28.1	μg/l	F	9.84
Sonsela Sandstone	Selenium	Filtered	CMW23	1/26/99	15.4	μg/l	F	9.84
Sonsela Sandstone	Selenium	Total	CMW23	10/22/98	20.2	μg/l		11.4
Sonsela Sandstone	Selenium	Total	CMW23	1/26/99	17	μg/l		11.4
Sonsela Sandstone	Silver	Total	CMW16	1/22/99	1.68	μg/l	JP	1.61
Sonsela Sandstone	Thallium	Filtered	CMW23	10/23/98	0.217	μg/l	F	0
Sonsela Sandstone	Thallium	Total	CMW23	10/22/98	0.263	μg/l		0
Sonsela Sandstone	Vanadium	Total	CMW21	1/27/99	75.8	μg/l		65
Sonsela Sandstone	Zinc	Filtered	CMW16	10/22/96	14.3	μg/l	F	8.75
Sonsela Sandstone	Zinc	Filtered	CMW21	1/27/99	21.1	μg/l	F	8.75
Sonsela Sandstone	Zinc	Filtered	CMW23	1/26/99	28.9	μg/l	F	8.75
Sonsela Sandstone	Zinc	Total	CMW16	10/21/98	65.3	μg/l	J	16.4

,

Formation		Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Sonsela Sandstone	Zinc		Total	CMW16	1/22/99	23.8	μg/l		16.4
Sonsela Sandstone	Zinc		Total	CMW21	10/23/98	63.4	μg/l	J	16.4
Sonsela Sandstone	Zinc		Total	CMW21	1/27/99	137	μg/l		16.4
Sonsela Sandstone	Zinc		Total	CMW22	10/24/98	58.4	μg/l	J	16.4
Sonsela Sandstone	Zinc		Total	CMW22	1/29/99	62	μg/l		16.4
Sonsela Sandstone	Zinc		Total	CMW23	10/22/98	225	μg/l		16.4
Sonsela Sandstone	Zinc		Total	CMW23	1/26/99	46.7	μg/l		16.4

Notes:

 $\mu g/l = micrograms per liter.$

Flagging Codes:

C - Analysis was confirmed.

D - Duplicate analysis.

F - Sample filtered prior to analysis.

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

Q - Sample interference obscured peak of interest.

V - Sample subjected to unusual storage/preservation conditions.

Table 3-29
Samples that Exceeded Screening Criteria
Sonsela Sandstone Member
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
Sonsela Sandstone	Aluminum	Total	CMW16	2/10/97	44000	μg/l	D	13000	37000
Sonsela Sandstone	Aluminum	Total	CMW16	2/10/97	46200	. υ μg/l		13000	37000
Sonsela Sandstone	Aluminum	Total	CMW21	1/27/99	92700	μg/l		13000	37000
Sonsela Sandstone	Aluminum	Total	CMW23	10/22/98	46700	μg/l		13000	37000
Sonsela Sandstone	Ammonia nitrogen	Filtered	CMW21	10/23/98	456	μg/l	JF	27.9	174
Sonsela Sandstone	Ammonia nitrogen	Total	CMW2 1	10/23/98	381	μg/l	J	27.2	174
Sonsela Sandstone	Ammonia nitrogen	Total	CMW23	10/22/98	199	μg/l		27.2	174
Sonsela Sandstone	Antimony	Filtered	CMW16	1/22/99	10.2	μg/l	F	0	6
Sonsela Sandstone	Antimony	Total	CMW16	1/22/99	23.3	μg/1		1.97	6
Sonsela Sandstone	Iron	Total	CMW16	2/10/97	18400	μg/l	D	6860	11000
Sonsela Sandstone	Iron	Total	CMW16	2/10/97	19100	μg/l		6860	11000
Sonsela Sandstone	Iron	Total	CMW21	1/27/99	38300	μg/l		6860	11000
Sonsela Sandstone	Iron	Total	CMW23	10/22/98	19700	μg/l		6860	11000
Sonsela Sandstone	Lead	Total	CMW21	1/27/99	18.6	μg/1		2.39	15
Sonsela Sandstone	Lead	Total	CMW23	10/22/98	40.4	μg/l	J	2.39	15
Sonsela Sandstone	RDX	Total	CMW16	10/22/96	17.3	μg/l	С	0	0.61
Sonsela Sandstone	RDX	Total	CMW16	2/10/97	13.2	μg/l	С	0	0.61
Sonsela Sandstone	RDX	Total	CMW16	2/10/97	14.5	μg/l	CVD	0	0.61
Sonsela Sandstone	RDX	Total	CMW16	10/21/98	15.8	μg/l	С	0	0.61
Sonsela Sandstone	RDX	Total	CMW16	1/22/99	12.4	μg/1		0	0.61

Notes:

-

 $\mu g/l = micrograms per liter.$

Flagging Codes:

C - Analysis was confirmed.

D - Duplicate analysis.

F - Sample filtered prior to analysis.

J - Value is estimated.

V - Sample subjected to unusual storage/preservation conditions.

Table 3-30 Samples that Exceeded Closure Performance Standards Sonsela Sandstone Member Current OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration	Closure Performance Standards Contentration
Sonsela Sandstone	Ammonia nitrogen	Filtered	CMW21	10/23/98	456	μg/l	JF	27.9	174	174
Sonsela Sandstone	Ammonia nitrogen	Total	CMW21	10/23/98	381	μg/l	J	27.2	174	174
Sonsela Sandstone	Ammonia nitrogen	Total	CMW23	10/22/98	199	μg/l		27.2	174	174
Sonsela Sandstone	Antimony	Filtered	CMW16	1/22/99	10.2	μg/l	F	0	6	6
Sonsela Sandstone	Antimony	Total	CMW16	1/22/99	23.3	μg/i		1.97	6	6
Sonsela Sandstone	Lead	Total	CMW21	1/27/99	18.6	μg/l		2.39	15	15
Sonsela Sandstone	Lead	Total	CMW23	10/22/98	40.4	µg/l	J	2.39	15	15

Notes:

 $\mu g/l = micrograms$ per liter.

Flagging Codes:

C - Analysis was confirmed.

D - Duplicate analysis.

F - Sample filtered prior to analysis.

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

Q - Sample interference obscured peak of interest.

V - Sample subjected to unusual storage/preservation conditions.

.

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Entrada Sandstone	Aluminum	Total	KMW10	2/11/97	14000	μg/l		13000
Entrada Sandstone	Ammonia nitrogen	Filtered	KMW10	10/21/98	94.1	μg/l	F	27.9
Entrada Sandstone	Ammonia nitrogen	Filtered	KMW10	1/25/99	95.9	μg/l	F	27.9
Entrada Sandstone	Ammonia nitrogen	Total	KMW10	10/21/98	1040	μg/1	J	27.2
Entrada Sandstone	Ammonia nitrogen	Total	KMW10	1/25/99	571	μg/I	•	27.2
Entrada Sandstone	Barium	Total	KMW10	2/11/97	152	μg/l		122
Entrada Sandstone	Beryllium	Total	KMW10	2/11/97	0.652	μg/l		0
Entrada Sandstone	Beryllium	Total	KMW10	10/21/98	0.296	μg/l	J	0
Entrada Sandstone	Beryllium	Total	KMW10	1/25/99	0.363	μg/l	JP	0
Entrada Sandstone	Cadmium	Total	KMW10	10/29/96	0.111	μg/l		0
Entrada Sandstone	Cadmium	Total	KMW10	2/11/97	0.223	μg/l		0
Entrada Sandstone	Cadmium	Total	KMW10	10/21/98	0.358	μg/l	J	0
Entrada Sandstone	Cadmium	Total	KMW10	1/25/99	0.138	μg/l	JP	0
Entrada Sandstone	Chromium	Filtered	KMW10	10/29/96	5.2	μg/l	F	3.02
Entrada Sandstone	Chromium	Total	KMW10	2/11/97	8.84	μg/1		7.18
Entrada Sandstone	Chromium	Total	KMW10	1/25/99	8.66	μg/l	ЛЬ	7.18
Entrada Sandstone	Cobalt	Total	KMW10	10/29/96	1.16	μg/l		1.08
Entrada Sandstone	Cobalt	Total	KMW10	2/11/97	6.53	μg/l		1.08
Entrada Sandstone	Copper	Filtered	KMW10	1/25/99	5.78	μg/l	FJP	2.32
Entrada Sandstone	Iron	Total	KMW10	2/11/97	8050	μg/l		6860
Entrada Sandstone	Iron	Total	KMW10	10/21/98	8530	μg/l	J	6860
Entrada Sandstone	Lead	Total	KMW10	2/11/97	8.38	μg/l		2.39
Entrada Sandstone	Lead	Total	KMW 10	10/21/98	5.24	μg/I	J	2.39
Entrada Sandstone	Manganese	Filtered	KMW10	10/29/96	14.4	μg/l	F	14.1
Entrada Sandstone	Manganese	Filtered	KMW10	1/25/99	92.6	μg/l	F	14.1
Entrada Sandstone	Manganese	Total	KMW10	2/11/97	230	μg/l		194
Entrada Sandstone	Manganese	Total	KMW10	10/21/98	229	μg/l	J	194
Entrada Sandstone	Nickel	Filtered	KMW10	10/29/96	3.77	μg/l	F	2.41
Entrada Sandstone	Nickel	Filtered	KMW10	2/11/97	5.51	μg/1	F	2.41
Entrada Sandstone	Nickel	Total	KMW10	2/11/97	12.7	μg/l		8.26

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

r.

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration
Entrada Sandstone	Nitrite (as nitrite)	Total	KMW10	10/21/98	13.8	μg/l		12.9
Entrada Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	KMW10	10/21/98	8050	μg/1	J	168
Entrada Sandstone	Nitrite, nitrate - nonspecific (as nitrogen)	Total	KMW10	1/25/99	7320	μg/l		168
Entrada Sandstone	Selenium	Filtered	KMW10	10/29/96	21.9	μg/1	F	9.84
Entrada Sandstone	Selenium	Filtered	KMW10	2/11/97	20.6	μg/1	F	9.84
Entrada Sandstone	Selenium	Filtered	KMW10	10/21/98	24.4	μg/l	F	9.84
Entrada Sandstone	Selenium	Filtered	KMW10	1/25/99	20.8	μg/l	F	9.84
Entrada Sandstone	Selenium	Total	KMW10	10/29/96	22.1	μg/l		11.4
Entrada Sandstone	Selenium	Total	KMW10	2/11/97	20.2	μg/l		11.4
Entrada Sandstone	Selenium	Total	KMW10	10/21/98	23.8	μg/1		11.4
Entrada Sandstone	Selenium	Total	KMW10	1/25/99	17.6	μg/l		11.4
Entrada Sandstone	Thallium	Total	KMW10	2/11/97	0.127	μg/l		0
Entrada Sandstone	Zinc	Filtered	KMW10	1/25/99	28.2	μg/l	F	8.75
Entrada Sandstone	Zinc	Total	KMW10	2/11/97	44.7	μg/l		16.4
Entrada Sandstone	Zinc	Total	KMW10	10/21/98	53.2	μg/l	J	16.4
Entrada Sandstone	Zinc	Total	KMW10	1/25/99	21.5	µg/l		16.4

Notes:

 $\mu g/l = micrograms per liter.$

Flagging Codes:

F - Sample filtered prior to analysis.

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

.

Table 3-32
Samples that Exceeded Screening Criteria
Entrada Sandstone Formation
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
Entrada Sandstone	Ammonia nitrogen	Total	KMW10	10/21/98	1040	μg/l	l	27.2	174
Entrada Sandstone	Ammonia nitrogen	Total	KMW10	1/25/99	571	μg/l		27.2	174

Notes:

µg/l = micrograms per liter.

Flagging Codes:

J - Value is estimated.

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

.

Table 3-33Samples that Exceeded Closure Performance StandardsEntrada Sandstone FormationCurrent OB/OD Area Ground Water SystemFort Wingate Depot ActivityGallup, New Mexico

Formation	Parameter	Fraction	Site ID	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration	Closure Performance Standards Contentration
Entrada Sandstone	Ammonia nitrogen	Total	KMW10	10/21/98	1040	µg/l	J	27.2	174	174
Entrada Sandstone	Ammonia nitrogen	Total	KMW10	1/25/99	571	µg/l		27.2	174	174

Notes:

µg/l = micrograms per liter.

.

Flagging Codes:

J - Value is estimated.

.

Table 3-34
Samples that Exceeded Background
Soil Borings
Closed OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW09	1,3,5-Trinitrobenzene	KMW090835	09/03/96	35	0.208	μg/g	JP	0
KMW09	4-Amino-2,6-dinitrotoluene	KMW090310	09/03/96	10	0.183	μg/g	JP	0
KMW09	Barium	KMW090205	09/03/96	5	186	μg/g		159.28
KMW09	Barium	KMW090205	09/03/96	5	201	μg/g	D	159.28
KMW09	Barium	KMW090520	09/03/96	20	255	μg/g		159.28
KMW09	Barium	KMW090625	09/03/96	25	196	μg/g		159.28
KMW09	Barium	KMW090730	09/03/96	30	178	μg/g		159.28
KMW09	Barium	KMW090835	09/03/96	35	225	μg/g		159.28
KMW09	Beryllium	KMW090101	09/03/96	1	1.06	μg/g		1.02
KMW09	Beryllium	KMW090310	09/03/96	10	1.18	μg/g		1.02
KMW09	Copper	KMW090730	09/03/96	30	34	μg/g		27.84
KMW09	Iron	KMW090835	09/03/96	35	64000	μg/g		32403.68
KMW09	Manganese	KMW090625	09/03/96	25	523	μg/g		391.98
KMW09	Manganese	KMW090835	09/03/96	35	637	μg/g		391.98
KMW09	Mercury	KMW090310	09/03/96	10	0.081	µg/g	JP	0.08
KMW09	Thallium	KMW090310	09/03/96	10	0.684	µg/g	JP	0
KMW09	Thallium	KMW090835	09/03/96	35	2.77	µg/g		0
KMW09	Thallium	KMW090940	09/03/96	40	0.803	µg/g	JP	0
KMW09	Vanadium	KMW090101	09/03/96	1	39.8	µg/g		32.61
KMW09	Vanadium	KMW090310	09/03/96	10	43.9	µg/g		32.61
KMW12	Antimony	KMW120110	08/03/98	10	0.0565	μg/g		0
KMW12	Cadmium	KMW120110	08/03/98	10	0.106	μg/g		0
KMW12	Cadmium	KMW12SO56	08/06/98	56	0.0214	μg/g		0
KMW12	Silver	KMW120110	08/03/98	10	0.274	μg/g		0
KMW12	Thallium	KMW120110	08/03/98	10	0.0136	μg/g		0
KMW12	Thallium	KMW12SO56	08/06/98	56	0.051	μg/g		0
KMW12	Zinc	KMW12SO56	08/06/98	56	81.6	μg/g		77.28
KMW13	Cadmium	KMW13ASO10	08/21/98	10	0.0518	μg/g		0

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW13	Cadmium		KMW13ASO10	08/21/98	10	0.0754	μg/g	D	0
KMW13	Cadmium		KMW13ASO25	08/21/98	25	0.0237	μg/g		0
KMW13	Manganese		KMW13ASO25	08/21/98	25	521	μg/g		391.98
KMW13	Silver		KMW13ASO10	08/21/98	10	0.0328	μg/g		0
KMW13	Silver		KMW13ASO10	08/21/98	10	0.0362	μg/g	D	0
KMW13	Silver		KMW13ASO25	08/21/98	25	0.0138	μg/g		0
KMW13	Thallium		KMW13ASO10	08/21/98	10	0.0109	μg/g	D	0
KMW14	Antimony		KMW14SO10	08/26/98	10	0.0844	μg/g		0
KMW14	Cadmium		KMW14SO10	08/26/98	10	0.0642	μg/g		0
KMW14	Cadmium		KMW14SO24	08/26/98	24	0.0526	μg/g		0
KMW14	Silver		KMW14SO10	08/26/98	10	0.041	μg/g		0
KMW14	Silver		KMW14SO24	08/26/98	24	0.0286	μg/g		0
KMW14	Thallium		KMW14SO10	08/26/98	10	0.0168	μg/g		0
KMW14	Thallium		KMW14SO24	08/26/98	24	0.0112	μg/g		0

Notes:

 $\mu g/g = micrograms per gram.$

.

Flagging Codes:

D - Duplicate analysis.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

Table 3-35	
Samples that Exceeded Screening Criteri	a
Soil Borings	
Closed OB/OD Area Ground Water System	m
Fort Wingate Depot Activity	
Gallup, New Mexico	

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
KMW09	Iron	KMW090835	09/03/96	35	64000	μg/g		32403.68	23000

Notes:

 $\mu g/g = micrograms per gram.$

Table 3-36 Samples that Exceeded Closure Performance Standards Soil Borings Closed OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

····										Closure
										Performance
							Flag	Background	Screening Level	Standards
Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Codes	Concentration	Concentration	Contentration

No samples exceeded closure performance standards.

Notes:

µg/g = micrograms per gram.

٠

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Pa	rameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW02	Beryllium		CMW020310	08/01/96	10	1.17	µg/g		1.1
CMW02	Chromium		CMW020310	08/01/96	10	34	μg/g		17
CMW02	Cobalt		CMW020310	08/01/96	10	9.79	μg/g		6.5
CMW02	Copper		CMW020101	08/01/96	10	21.5	μg/g		18.9
CMW02	Iron		CMW020310	08/01/96	10	26200	μg/g		17647.3
CMW02	Manganese		CMW020310	08/01/96	10	768	μg/g		458.1
CMW02	Manganese		CMW020410	08/01/96	10	600	μg/g		458.1
CMW02	Molybdenum		CMW020410	08/01/96	10	1.18	μg/g	JP	0
CMW02	Nickel		CMW020310	08/01/96	10	20.4	μg/g		14.3
CMW02	Thallium		CMW020310	08/01/96	10	1.6	μg/g		0
CMW02	Vanadium		CMW020310	08/01/96	10	43.1	μg/g		31.3
CMW02	Zinc		CMW020310	08/01/96	10	32.8	μg/g		29.2
CMW03	Arsenic		CMW030101	08/09/96	1	4.72	μg/g	J	2.7
CMW03	Cadmium		CMW030101	08/09/96	1	0.167	μg/g	JP	0
CMW03	Cadmium		CMW030203	08/09/96	3	0.0478	μg/g	JP	0
CMW03	Copper		CMW030101	08/09/96	1	36.3	μg/g		18.9
CMW03	Manganese		CMW030101	08/09/96	1	517	μg/g		458.1
CMW03	Molybdenum		CMW030101	08/09/96	1	2.04	μg/g	JP	0
CMW03	Molybdenum		CMW030203	08/09/96	3	1.78	μg/g	JP	0
CMW04	Antimony		CMW040625	08/02/96	25	6.24	μg/g	JP	0
CMW04	Antimony		CMW040730	08/02/96	30	0.561	μg/g	JP	0
CMW04	Antimony		CMW041045	08/02/96	45	2.02	μg/g	JP	0
CMW04	Antimony		CMW041570	08/03/96	70	8.52	μg/g	JP	0
CMW04	Arsenic		CMW040520	08/02/96	20	3.21	μg/g	D	2.7
CMW04	Barium		CMW040415	08/02/96	15	468	μg/g		430.7
CMW04	Barium		CMW040940	08/02/96	40	542	μg/g		430.7
CMW04	Beryllium		CMW040520	08/02/96	20	1.12	μg/g	D	1.1
CMW04	Beryllium		CMW040940	08/02/96	40	1.13	μg/g		1.1

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW04	Beryllium		CMW041150	08/02/96	50	1.31	μg/g		1.1
CMW04	Beryllium		CMW041570	08/03/96	70	1.31	μg/g		1.1
CMW04	Beryllium		CMW041675	08/03/96	75	1.16	μg/g		1.1
CMW04	Beryllium		CMW041780	08/03/96	80	1.29	μg/g		1.1
CMW04	Beryllium		CMW041884	08/03/96	84	1.21	μg/g		1.1
CMW04	Cadmium		CMW040101	08/01/96	1	0.0729	μg/g	JP	0
CMW04	Cadmium		CMW041570	08/03/96	70	0.347	μg/g		0
CMW04	Cadmium		CMW041675	08/03/96	75	0.258	μg/g		0
CMW04	Cadmium		CMW041780	08/03/96	80	0.259	μg/g		0
CMW04	Cadmium		CMW041884	08/03/96	84	0.251	μg/g		0
CMW04	Chromium		CMW040205	08/01/96	5	23.1	μg/g		17
CMW04	Chromium		CMW040415	08/02/96	15	17.7	μg/g		17
CMW04	Chromium		CMW040520	08/02/96	20	23.9	μg/g		17
CMW04	Chromium		CMW040520	08/02/96	20	27.3	μg/g	D	17
CMW04	Chromium		CMW040625	08/02/96	25	30.8	μg/g		17
CMW04	Chromium		CMW040730	08/02/96	30	27.7	μg/g		17
CMW04	Chromium		CMW040835	08/02/96	35	25.3	μg/g		17
CMW04	Chromium		CMW040940	08/02/96	40	34.6	μg/g		17
CMW04	Chromium		CMW041045	08/02/96	45	27.2	μg/g		17
CMW04	Chromium		CMW041150	08/02/96	50	34.7	μg/g		17
CMW04	Chromium		CMW041255	08/02/96	55	24.2	µg/g		17
CMW04	Chromium		CMW041360	08/02/96	60	26.9	μg/g		17
CMW04	Chromium		CMW041465	08/02/96	65	23.9	μg/g		17
CMW04	Chromium		CMW041570	08/03/96	70	36.3	μg/g		17
CMW04	Chromium		CMW041675	08/03/96	75	38.2	µg/g		17
CMW04	Chromium		CMW041780	08/03/96	80	33.1	μg/g		17
CMW04	Chromium		CMW041884	08/03/96	84	37.4	μg/g		17
CMW04	Cobalt		CMW040205	08/01/96	5	6.91	μg/g		6.5

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

.

PMC

Page 2 of 41

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Para	ameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW04	Cobalt		CMW040520	08/02/96	20	7.07	μg/g		6.5
CMW04	Cobalt		CMW040520	08/02/96	20	8.43	μg/g	D	6.5
CMW04	Cobalt		CMW040625	08/02/96	25	9	μg/g	_	6.5
CMW04	Cobalt		CMW040730	08/02/96	30	8.46	μg/g		6.5
CMW04	Cobalt		CMW040835	08/02/96	35	7.96	µg/g		6.5
CMW04	Cobalt		CMW040940	08/02/96	40	10.3	μg/g		6.5
CMW04	Cobalt		CMW041045	08/02/96	45	8.9	μg/g		6.5
CMW04	Cobalt		CMW041150	08/02/96	50	10.1	μg/g		6.5
CMW04	Cobalt		CMW041255	08/02/96	55	6.89	μg/g		6.5
CMW04	Cobalt		CMW041360	08/02/96	60	8.38	μg/g		6.5
CMW04	Cobalt		CMW041570	08/03/96	70	14.4	μg/g		6.5
CMW04	Cobalt		CMW041675	08/03/96	75	14.5	μg/g		6.5
CMW04	Cobalt		CMW041780	08/03/96	80	12.8	μg/g		6.5
CMW04	Cobalt		CMW041884	08/03/96	84	11.5	μg/g		6.5
CMW04	Copper		CMW040101	08/01/96	1	34.4	μg/g		18.9
CMW04	Copper		CMW040205	08/01/96	5	19.3	μg/g		18.9
CMW04	Iron		CMW040205	08/01/96	5	19900	μg/g		17647.3
CMW04	Iron		CMW040520	08/02/96	20	21200	μg/g		17647.3
CMW04	Iron		CMW040520	08/02/96	20	23600	μg/g	D	17647.3
CMW04	Iron		CMW040625	08/02/96	25	23800	μg/g		17647.3
CMW04	Iron		CMW040730	08/02/96	30	21600	μg/g		17647.3
CMW04	Iron		CMW040835	08/02/96	35	22100	µg/g		17647.3
CMW04	Iron		CMW040940	08/02/96	40	26400	μg/g		17647.3
CMW04	Iron		CMW041045	08/02/96	45	25500	μg/g		17647.3
CMW04	Iron		CMW041150	08/02/96	50	28600	μg/g		17647.3
CMW04	Iron		CMW041255	08/02/96	55	22400	μg/g		17647.3
CMW04	Iron		CMW041360	08/02/96	60	21700	μg/g		17647.3
CMW04	Iron		CMW041465	08/02/96	65	20800	μg/g		17647.3

.

Boring	·	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW04	Iron		CMW041570	08/03/96	70	32000	μg/g		17647.3
CMW04	Iron		CMW041675	08/03/96	75	32200	μg/g		17647.3
CMW04	Iron		CMW041780	08/03/96	80	31600	μg/g		17647.3
CMW04	Iron		CMW041884	08/03/96	84	31000	μg/g		17647.3
CMW04	Lead		CMW040520	08/02/96	20	13.1	μg/g		12.5
CMW04	Lead		CMW040520	08/02/96	20	13.2	μg/g	D	12.5
CMW04	Leađ		CMW040625	08/02/96	25	12.6	μg/g		12.5
CMW04	Lead		CMW040730	08/02/96	30	12.8	μg/g		12.5
CMW04	Lead		CMW040940	08/02/96	40	13	μg/g		12.5
CMW04	Lead		CMW041150	08/02/96	50	13	μg/g		12.5
CMW04	Lead		CMW041255	08/02/96	55	14.2	μg/g		12.5
CMW04	Lead		CMW041465	08/02/96	65	14.5	μg/g		12.5
CMW04	Lead		CMW041570	08/03/96	70	13.1	μg/g		12.5
CMW04	Lead		CMW041675	08/03/96	75	13	μg/g		12.5
CMW04	Manganese		CMW040835	08/02/96	35	513	μg/g		458.1
CMW04	Molybdenum		CMW040520	08/02/96	20	2.87	μg/g	JP	0
CMW04	Molybdenum		CMW040520	08/02/96	20	3.92	µg/g	DJP	0
CMW04	Nickel		CMW040520	08/02/96	20	14.6	µg/g		14.3
CMW04	Nickel		CMW040520	08/02/96	20	16.7	µg/g	D	14.3
CMW04	Nickel		CMW040625	08/02/96	25	16.9	μg/g		14.3
CMW04	Nickel		CMW040730	08/02/96	30	17.4	μg/g		14.3
CMW04	Nickel		CMW040835	08/02/96	35	15.1	µg/g		14.3
CMW04	Nickel		CMW040940	08/02/96	40	21.9	μg/g		14.3
CMW04	Nickel		CMW041045	08/02/96	45	18.8	μg/g		14.3
CMW04	Nickel		CMW041150	08/02/96	50	19.6	μg/g		14.3
CMW04	Nickel		CMW041255	08/02/96	55	14.7	μg/g		14.3
CMW04	Nickel		CMW041360	08/02/96	60	19.2	μg/g		14.3
CMW04	Nickel		CMW041570	08/03/96	70	27.6	μg/g		14.3

.

Page 4 of 41

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW04	Nickel	CMW041675	08/03/96	75	24.6	μg/g		14.3
CMW04	Nickel	CMW041780	08/03/96	80	24.9	μg/g		14.3
CMW04	Nickel	CMW041884	08/03/96	84	23	μg/g		14.3
CMW04	Selenium	CMW040520	08/02/96	20	0.519	μg/g	JP	0.4
CMW04	Thallium	CMW040205	08/01/96	5	0.878	μg/g	JP	0
CMW04	Thallium	CMW041570	08/03/96	70	1.2	μg/g		0
CMW04	Thallium	CMW041675	08/03/96	75	1.64	μg/g		0
CMW04	Thallium	CMW041780	08/03/96	80	1.47	μg/g		0
CMW04	Thallium	CMW041884	08/03/96	84	0.842	μg/g	JP	0
CMW04	Vanadium	CMW040205	08/01/96	5	41.6	μg/g		31.3
CMW04	Vanadium	CMW040520	08/02/96	20	67.9	μg/g		31.3
CMW04	Vanadium	CMW040520	08/02/96	20	89.6	μg/g	D	31.3
CMW04	Vanadium	CMW040625	08/02/96	25	31.5	μg/g		31.3
CMW04	Vanadium	CMW040940	08/02/96	40	52.3	μg/g		31.3
CMW04	Vanadium	CMW041045	08/02/96	45	39.2	μg/g		31.3
CMW04	Vanadium	CMW041150	08/02/96	50	35	μg/g		31.3
CMW04	Vanadium	CMW041360	08/02/96	60	152	μg/g		31.3
CMW04	Vanadium	CMW041570	08/03/96	70	54.8	μg/g		31.3
CMW04	Vanadium	CMW041675	08/03/96	75	46.7	μg/g		31.3
CMW04	Vanadium	CMW041780	08/03/96	80	63.6	μg/g		31.3
CMW04	Vanadium	CMW041884	08/03/96	84	41.5	μg/g		31.3
CMW04	Zinc	CMW040205	08/01/96	5	36	μg/g		29.2
CMW04	Zinc	CMW040940	08/02/96	40	34.3	μg/g		29.2
CMW04	Zinc	CMW041045	08/02/96	45	33.6	μg/g		29.2
CMW04	Zinc	CMW041150	08/02/96	50	38.3	μg/g		29.2
CMW04	Zinc	CMW041360	08/02/96	60	33.2	μg/g		29.2
CMW04	Zinc	CMW041570	08/03/96	70	49.1	μg/g		29.2
CMW04	Zinc	CMW041675	08/03/96	75	49	μg/g		29.2

Boring	Pa	ırameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW04	Zinc		CMW041780	08/03/96	80	46.9	µg/g		29.2
CMW04	Zinc		CMW041884	08/03/96	84	43.2	μg/g		29.2
CMW05	Cadmium		CMW050101	08/09/96	1	0.25	μg/g		0
CMW05	Cadmium		CMW050205	08/09/96	5	0.183	μg/g	JP	0
CMW05	Chromium		CMW050101	08/09/96	1	18.1	μg/g		17
CMW05	Chromium		CMW050205	08/09/96	5	25	μg/g		17
CMW05	Cobalt		CMW050205	08/09/96	5	8.42	μg/g		6.5
CMW05	Copper		CMW050101	08/09/96	1	34.2	μg/g		18.9
CMW05	Copper		CMW050205	08/09/96	5	25.4	μg/g		18.9
CMW05	Iron		CMW050205	08/09/96	5	22800	μg/g		17647.3
CMW05	Molybdenum		CMW050101	08/09/96	1	2.83	μg/g	JP	0
CMW05	Nickel		CMW050205	08/09/96	5	15.8	μg/g		14.3
CMW05	Silver		CMW050101	08/09/96	1	0.828	μg/g	JP	0
CMW05	Thallium		CMW050205	08/09/96	5	2.2	µg/g	J	0
CMW05	Vanadium		CMW050205	08/09/96	5	39.2	μg/g		31.3
CMW05	Zinc		CMW050205	08/09/96	5	34.2	μg/g		29.2
CMW06	Arsenic		CMW060101	08/09/96	1	3.48	μg/g		2.7
CMW06	Arsenic		CMW060415	08/09/96	15	3.31	µg∕g		2.7
CMW06	Beryllium		CMW060101	08/09/96	1	1.22	µg/g		1.1
CMW06	Beryllium		CMW060415	08/09/96	15	1.86	μg/g		1.1
CMW06	Cadmium		CMW060101	08/09/96	1	0.44	μg/g		0
CMW06	Cadmium		CMW060205	08/09/96	5	0.173	μg/g	JP	0
CMW06	Cadmium		CMW060310	08/09/96	10	0.259	μg/g		0
CMW06	Cadmium		CMW060415	08/09/96	15	0.246	μg/g	JP	0
CMW06	Chromium		CMW060101	08/09/96	1	28.5	μg/g		17
CMW06	Chromium		CMW060205	08/09/96	5	20	μg/g		17
CMW06	Chromium		CMW060415	08/09/96	15	42.3	μg/g		17
CMW06	Cobalt		CMW060101	08/09/96	1	9.03	μg/g		6.5

Page 6 of 41

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW06	Cobalt	CMW060205	08/09/96	5	6.86	μg/g		6.5
CMW06	Cobalt	CMW060415	08/09/96	15	12.4	µg/g		6.5
CMW06	Copper	CMW060101	08/09/96	1	31.3	μg/g		18.9
CMW06	Iron	CMW060101	08/09/96	1	24700	μg/g		17647.3
CMW06	Iron	CMW060205	08/09/96	5	17900	μg/g		17647.3
CMW06	Iron	CMW060415	08/09/96	15	34300	μg/g		17647.3
CMW06	Lead	CMW060101	08/09/96	1	29.2	µg/g		12.5
CMW06	Lead	CMW060415	08/09/96	15	16.3	μg/g		12.5
CMW06	Manganese	CMW060101	08/09/96	1	483	μg/g		458.1
CMW06	Manganese	CMW060415	08/09/96	15	483	μg/g		458.1
CMW06	Molybdenum	CMW060205	08/09/96	5	2.65	μg/g	JP	0
CMW06	Molybdenum	CMW060310	08/09/96	10	1.32	μg/g	JP	0
CMW06	Molybdenum	CMW060415	08/09/96	15	3.63	μg/g	JP	0
CMW06	Nickel	CMW060101	08/09/96	1	18.3	μg/g		14.3
CMW06	Nickel	CMW060415	08/09/96	15	24.4	µg/g		14.3
CMW06	Thallium	CMW060101	08/09/96	1	0.619	μg/g	JP	0
CMW06	Thallium	CMW060205	08/09/96	5	0.59	μg/g	JP	0
CMW06	Vanadium	CMW060101	08/09/96	1	48.9	µg/g		31.3
CMW06	Vanadium	CMW060205	08/09/96	5	35.2	µg/g		31.3
CMW06	Vanadium	CMW060415	08/09/96	15	63.3	µg/g		31.3
CMW06	Zinc	CMW060101	08/09/96	1	46.4	μg/g		29.2
CMW06	Zinc	CMW060205	08/09/96	5	31.1	µg/g		29.2
CMW06	Zinc	CMW060415	08/09/96	15	60.1	μg/g		29.2
CMW07	4-Amino-2,6-dinitrotoluene	CMW070520	08/10/96	20	0.421	µg/g	JP	0
CMW07	Arsenic	CMW070310	08/10/96	10	3.55	µg/g	J	2.7
CMW07	Beryllium	CMW070415	08/10/96	15	1.17	μg/g		1.1
CMW07	Beryllium	CMW071045	08/10/96	45	1.14	μg/g		1.1
CMW07	Cadmium	CMW070101	08/10/96	1	3.09	μg/g		0

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW07	Cadmium		CMW070205	08/10/96	5	0.129	μg/g	JP	0
CMW07	Cadmium		CMW070310	08/10/96	10	0.139	μg/g	JP	0
CMW07	Cadmium		CMW070415	08/10/96	15	0.223	μg/g	JP	0
CMW07	Cadmium		CMW070520	08/10/96	20	0.129	μg/g	JP	0
CMW07	Cadmium		CMW070625	08/10/96	25	0.0558	μg/g	JP	0
CMW07	Cadmium		CMW070730	08/10/96	30	0.116	μg/g	JP	0
CMW07	Cadmium		CMW070835	08/10/96	35	0.0964	μg/g	JP	0
CMW07	Cadmium		CMW070940	08/10/96	40	0.0652	μg/g	JP	0
CMW07	Cadmium		CMW071045	08/10/96	45	0.0802	μg/g	JP	0
CMW07	Cadmium		CMW071148	08/10/96	48	0.0933	μg/g	JP	0
CMW07	Chromium		CMW070101	08/10/96	1	70.8	μg/g		17
CMW07	Chromium		CMW070310	08/10/96	10	20.6	μg/g		17
CMW07	Chromium		CMW070730	08/10/96	30	24.1	μg/g		17
CMW07	Chromium		CMW070835	08/10/96	35	23	μg/g		17
CMW07	Chromium		CMW070940	08/10/96	40	23	μg/g		17
CMW07	Chromium		CMW071045	08/10/96	45	23.1	μg/g		17
CMW07	Cobalt		CMW070101	08/10/96	1	7.17	μg/g		6.5
CMW07	Cobalt		CMW070415	08/10/96	15	9.08	μg/g		6.5
CMW07	Cobalt		CMW070730	08/10/96	30	8.84	μg/g		6.5
CMW07	Cobalt		CMW070835	08/10/96	35	8.5	μg/g		6.5
CMW07	Cobalt		CMW070940	08/10/96	40	7.48	μg/g		6.5
CMW07	Cobalt		CMW071045	08/10/96	45	7.91	μg/g		6.5
CMW07	Cobalt		CMW071148	08/10/96	48	9.42	μg/g		6.5
CMW07	Copper		CMW070101	08/10/96	1	563	μg/g		18.9
CMW07	Iron		CMW070101	08/10/96	1	21400	μg/g		17647.3
CMW07	Iron		CMW070310	08/10/96	10	18500	μg/g		17647.3
CMW07	Iron		CMW070730	08/10/96	30	19200	μg/g		17647.3
CMW07	Iron		CMW070835	08/10/96	35	23300	μg/g		17647.3

,

PMC

Page 8 of 41

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW07	Iron	CMW070940	08/10/96	40	26400	μg/g		17647.3
CMW07	Iron	CMW071045	08/10/96	45	26000	μg/g		17647.3
CMW07	Lead	CMW070101	08/10/96	1	13.1	μg/g		12.5
CMW07	Lead	CMW070940	08/10/96	40	13.1	μg/g		12.5
CMW07	Lead	CMW071045	08/10/96	45	12.7	µg/g		12.5
CMW07	Manganese	CMW070310	08/10/96	10	477	μg/g		458.1
CMW07	Molybdenum	CMW070101	08/10/96	1	2.49	µg/g	JP	0
CMW07	Molybdenum	CMW070310	08/10/96	10	1.89	μg/g	JP	0
CMW07	Molybdenum	CMW070415	08/10/96	15	1.25	μg/g	JP	0
CMW07	Molybdenum	CMW070625	08/10/96	25	2.14	μg/g	JP	0
CMW07	Molybdenum	CMW070730	08/10/96	30	1.94	μg/g	JP	0
CMW07	Molybdenum	CMW070835	08/10/96	35	1.77	μg/g	JP	0
CMW07	Nickel	CMW070101	08/10/96	1	37.8	μg/g		14.3
CMW07	Nickel	CMW070310	08/10/96	10	16.4	µg/g		14.3
CMW07	Nickel	CMW070730	08/10/96	30	16.8	μg/g		14.3
CMW07	Nickel	CMW070835	08/10/96	35	18.2	μg/g		14.3
CMW07	Nickel	CMW070940	08/10/96	40	17.1	μg/g		14.3
CMW07	Nickel	CMW071045	08/10/96	45	20.8	μg/g		14.3
CMW07	RDX	CMW070101	08/10/96	1	0.669	μg/g	JP	0
CMW07	Thallium	CMW070101	08/10/96	1	2.04	μg/g	J	0
CMW07	Thallium	CMW070415	08/10/96	15	2.04	μg/g	J	0
CMW07	Thallium	CMW070835	08/10/96	35	2.03	μg/g	J	0
CMW07	Thallium	CMW070940	08/10/96	40	2.3	μg/g		0
CMW07	Thallium	CMW071045	08/10/96	45	2.1	μg/g	J	0
CMW07	Thallium	CMW071148	08/10/96	48	2.15	μg/g	J	0
CMW07	Vanadium	CMW070101	08/10/96	1	39.1	.εε μg/g		31.3
CMW07	Vanadium	CMW070310	08/10/96	10	39.8	μg/g		31.3
CMW07	Vanadium	CMW070730	08/10/96	30	34.2	μg/g		31.3

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW07	Vanadium	CMW070835	08/10/96	35	162	μg/g		31.3
CMW07	Vanadium	CMW071045	08/10/96	45	38.8	μg/g		31.3
CMW07	Zinc	CMW070101	08/10/96	1	45.8	μg/g		29.2
CMW07	Zinc	CMW070730	08/10/96	30	32	μg/g		29.2
CMW07	Zinc	CMW070835	08/10/96	35	33.1	μg/g		29.2
CMW07	Zinc	CMW071045	08/10/96	45	34.4	μg/g		29.2
CMW08	Cadmium	CMW080101	08/09/96	1	1.83	μg/g		0
CMW08	Cadmium	CMW080205	08/09/96	5	0.132	μg/g	JP	0
CMW08	Chromium	CMW080101	08/09/96	1	27.9	μg/g		17
CMW08	Copper	CMW080101	08/09/96	1	411	μg/g		18.9
CMW08	Lead	CMW080101	08/09/96	1	17	μg/g		12.5
CMW08	Molybdenum	CMW080205	08/09/96	5	1.65	μg/g	JP	0
CMW08	Nickel	CMW080101	08/09/96	1	19.1	μg/g		14.3
CMW08	Thallium	CMW080101	08/09/96	1	0.901	μg/g	JP	0
CMW08	Thallium	CMW080205	08/09/96	5	0.738	μg/g	JP	0
CMW08	Zinc	CMW080101	08/09/96	1	38.6	μg/g		29.2
CMW08	Zinc	CMW080205	08/09/96	5	32.2	μg/g		29.2
CMW09	2,4,6-Trinitrotoluene	CMW090205	08/09/96	5	0.256	μg/g	DJP	0
CMW09	Cadmium	CMW090101	08/09/96	1	0.619	µg/g		0
CMW09	Cadmium	CMW090205	08/09/96	5	0.347	μg/g	D	0
CMW09	Cadmium	CMW090205	08/09/96	5	0.395	µg/g		0
CMW09	Chromium	CMW090205	08/09/96	5	23.2	µg/g	D	17
CMW09	Chromium	CMW090205	08/09/96	5	25.2	µg/g		17
CMW09	Copper	CMW090101	08/09/96	1	94.1	μg/g		18.9
CMW09	Copper	CMW090205	08/09/96	5	180	µg/g	D	18.9
CMW09	Copper	CMW090205	08/09/96	5	242	μg/g		18.9
CMW09	Nickel	CMW090205	08/09/96	5	15.5	μg/g		14.3
CMW09	Thallium	CMW090205	08/09/96	5	0.587	μg/g	JP	0

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW10	Antimony	CMW100205	08/03/96	5	4.81	µg/g	DJP	0
CMW10	Arsenic	CMW100101	08/03/96	1	2.91	μg/g		2.7
CMW10	Arsenic	CMW100520	08/03/96	20	3	μg/g		2.7
CMW10	Barium	CMW100205	08/03/96	5	732	μg/g		430.7
CMW10	Barium	CMW100205	08/03/96	5	771	μg/g	D	430.7
CMW10	Barium	CMW100415	08/03/96	15	3000	μg/g		430.7
CMW10	Beryllium	CMW100310	08/03/96	10	1.13	μg/g		1.1
CMW10	Beryllium	CMW100625	08/05/96	25	1.14	μg/g		1.1
CMW10	Cadmium	CMW100101	08/03/96	1	0.287	μg/g		0
CMW10	Cadmium	CMW100205	08/03/96	5	0.224	μg/g		0
CMW10	Cadmium	CMW100205	08/03/96	5	0.28	μg/g	D	0
CMW10	Cadmium	CMW100310	08/03/96	10	0.338	μg/g		0
CMW10	Cadmium	CMW100415	08/03/96	15	0.323	μg/g		0
CMW10	Cadmium	CMW100520	08/03/96	20	0.302	μg/g		0
CMW10	Cadmium	CMW100625	08/05/96	25	0.347	µg/g		0
CMW10	Cadmium	CMW100730	08/05/96	30	0.274	µg/g		0
CMW10	Cadmium	CMW100833	08/05/96	33	0.292	μg/g		0
CMW10	Chromium	CMW100205	08/03/96	5	25.6	µg/g		17
CMW10	Chromium	CMW100205	08/03/96	5	27.3	μg/g	D	17
CMW10	Chromium	CMW100310	08/03/96	10	29.4	μg/g		17
CMW10	Chromium	CMW100415	08/03/96	15	25.4	μg/g		17
CMW10	Chromium	CMW100520	08/03/96	20	29.5	μg/g		17
CMW10	Chromium	CMW100625	08/05/96	25	27.5	µg∕g		17
CMW10	Chromium	CMW100730	08/05/96	30	20	µg∕g		17
CMW10	Chromium	CMW100833	08/05/96	33	23.1	μg/g		17
CMW10	Cobalt	CMW100205	08/03/96	5	8.3	μg/g		6.5
CMW10	Cobalt	CMW100205	08/03/96	5	8.16	µg/g	D	6.5
CMW10	Cobalt	CMW100310	08/03/96	10	8.65	μg/g		6.5

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW10	Cobalt	CMW100415	08/03/96	15	9.19	µg/g		6.5
CMW10	Cobalt	CMW100520	08/03/96	20	8.15	μg/g		6.5
CMW10	Cobalt	CMW100625	08/05/96	25	8.38	μg/g		6.5
CMW10	Cobalt	CMW100730	08/05/96	30	7.69	µg/g		6.5
CMW10	Cobalt	CMW100833	08/05/96	33	8.8	μg/g		6.5
CMW10	Iron	CMW100205	08/03/96	5	19900	μg/g		17647.3
CMW10	Iron	CMW100205	08/03/96	5	20200	μg/g	D	17647.3
CMW10	Iron	CMW100310	08/03/96	10	23000	μg/g		17647.3
CMW10	Iron	CMW100415	08/03/96	15	19700	μg/g		17647.3
CMW10	Iron	CMW100520	08/03/96	20	22600	μg/g		17647.3
CMW10	Iron	CMW100625	08/05/96	25	23300	μg/g		17647.3
CMW10	Iron	CMW100730	08/05/96	30	19800	μg/g		17647.3
CMW10	Iron	CMW100833	08/05/96	33	18500	μg/g		17647.3
CMW10	Lead	CMW100625	08/05/96	25	13.1	μg/g		12.5
CMW10	Manganese	CMW100101	08/03/96	1	1060	μg/g		458.1
CMW10	Manganese	CMW100205	08/03/96	5	887	μg/g		458.1
CMW10	Manganese	CMW100205	08/03/96	5	854	µg/g	D	458.1
CMW10	Manganese	CMW100310	08/03/96	10	752	µg/g		458.1
CMW10	Manganese	CMW100415	08/03/96	15	1570	µg/g		458.1
CMW10	Manganese	CMW100520	08/03/96	20	797	µg/g		458.1
CMW10	Manganese	CMW100625	08/05/96	25	770	µg/g		458.1
CMW10	Manganese	CMW100730	08/05/96	30	852	µg/g		458.1
CMW10	Manganese	CMW100833	08/05/96	33	1050	μg/g		458.1
CMW10	Molybdenum	CMW100205	08/03/96	5	1.42	μg/g	JP	0
CMW10	Molybdenum	CMW100310	08/03/96	10	1.48	µg/g	JP	0
CMW10	Molybdenum	CMW100415	08/03/96	15	1.78	µg/g	JP	0
CMW10	Molybdenum	CMW100625	08/05/96	25	1.76	μg/g	JP	0
CMW10	Molybdenum	CMW100730	08/05/96	30	1.3	μg/g	JP	0

Page 12 of 41

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW10	Nickel		CMW100205	08/03/96	5	17.9	µg/g		14.3
CMW10	Nickel		CMW100205	08/03/96	5	18.6	μg/g	D	14.3
CMW10	Nickel		CMW100310	08/03/96	10	19.9	μg/g		14.3
CMW10	Nickel		CMW100415	08/03/96	15	18.1	μg/g		14.3
CMW10	Nickel		CMW100520	08/03/96	20	19.5	μg/g		14.3
CMW10	Nickel		CMW100625	08/05/96	25	17.5	μg/g		14.3
CMW10	Nickel		CMW100730	08/05/96	30	16.4	μg/g		14.3
CMW10	Nickel		CMW100833	08/05/96	33	16.9	μg/g		14.3
CMW10	Silver		CMW100520	08/03/96	20	0.56	μg/g	JP	0
CMW10	Thallium		CMW100101	08/03/96	1	0.572	μg/g	JP	0
CMW10	Thallium		CMW100205	08/03/96	5	1.03	μg/g	JP	0
CMW10	Thallium		CMW100310	08/03/96	10	0.944	μg/g	JP	0
CMW10	Thallium		CMW100520	08/03/96	20	0.567	μg/g	JP	0
CMW10	Vanadium		CMW100205	08/03/96	5	32.2	μg/g	D	31.3
CMW10	Vanadium		CMW100310	08/03/96	10	36.8	μg/g		31.3
CMW10	Vanadium		CMW100415	08/03/96	15	33.9	μg/g		31.3
CMW10	Vanadium		CMW100520	08/03/96	20	44.7	μg/g		31.3
CMW10	Vanadium		CMW100625	08/05/96	25	39.6	µg/g		31.3
CMW10	Vanadium		CMW100730	08/05/96	30	33.9	µg∕g		31.3
CMW10	Vanadium		CMW100833	08/05/96	33	38.8	μg/g		31.3
CMW10	Zinc		CMW100310	08/03/96	10	32.9	µg∕g		29.2
CMW10	Zinc		CMW100625	08/05/96	25	34.8	μg/g		29.2
CMW10	Zinc		CMW100730	08/05/96	30	31.5	µg/g		29.2
CMW10	Zinc		CMW100833	08/05/96	33	31.7	µg/g		29.2
CMW11	Cadmium		CMW110101	08/08/96	1	0.353	µg/g		0
CMW11	Cadmium		CMW110205	08/08/96	5	0.0564	μg/g	JP	0
CMW11	Cadmium		CMW110310	08/08/96	10	0.0781	μg/g	JP	0
CMW11	Cadmium		CMW110412	08/08/96	12	0.123	μg/g	JP	0

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW11	Copper	CMW110101	08/08/96	1	22.1	μg/g		18.9
CMW11	Molybdenum	CMW110101	08/08/96	1	1.86	με/ε μg/g	JP	0
CMW11 CMW11	Molybdenum	CMW110205	08/08/96	5	1.86	με/ε με/g	JP	0
CMW12	Cadmium	CMW120101	08/08/96	1	0.0961	μg/g	DJP	0
CMW12	Cadmium	CMW120101	08/08/96	1	0.0933	μg/g	лр	0
CMW12	Cadmium	CMW120203	08/08/96	3	0.308	μg/g		0
CMW12	Copper	CMW120203	08/08/96	3	37	μg/g		18.9
CMW12	Molybdenum	CMW120101	08/08/96	1	2.57	μg/g	DJP	0
CMW12	Molybdenum	CMW120101	08/08/96	1	2.22	μg/g	JP	Ő
CMW14	2,4,6-Trinitrotoluene	CMW140205	08/05/96	5	0.548	μg/g	JP	0
CMW14	4-Amino-2,6-dinitrotoluene	CMW141360	08/06/96	60	0.496	μg/g	JP	0
CMW14	Antimony	CMW141045	08/05/96	45	5.85	μg/g	JP	ů 0
CMW14	Arsenic	CMW140520	08/05/96	20	4.21	μg/g	•-	2.7
CMW14	Arsenic	CMW140625	08/05/96	25	4.26	μg/g		2.7
CMW14	Arsenic	CMW140730	08/05/96	30	6.71	μg/g		2.7
CMW14	Arsenic	CMW140835	08/05/96	35	5.76	μg/g		2.7
CMW14	Arsenic	CMW140940	08/05/96	40	11.7	μg/g		2.7
CMW14	Arsenic	CMW141045	08/05/96	45	15.8	μg/g		2.7
CMW14	Arsenic	CMW141150	08/05/96	50	15.2	μg/g		2.7
CMW14	Arsenic	CMW141255	08/05/96	55	13.6	μg/g		2.7
CMW14	Arsenic	CMW141360	08/06/96	60	10.9	μg/g		2.7
CMW14	Barium	CMW140205	08/05/96	5	626	μg/g		430.7
CMW14	Barium	CMW140730	08/05/96	30	577	μg/g		430.7
CMW14	Barium	CMW141150	08/05/96	50	503	μg/g		430.7
CMW14	Barium	CMW141360	08/06/96	60	448	μg/g		430.7
CMW14	Beryllium	CMW140101	08/05/96	1	1.18	μg/g		1.1
CMW14	Beryllium	CMW140625	08/05/96	25	1.33	μg/g		1.1
CMW14	Beryllium	CMW140730	08/05/96	30	1.15	µg/g		1.1

PMC

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

,

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW14	Beryllium	CMW140940	08/05/96	40	1.2	µg/g		1.1
CMW14	Beryllium	CMW141150	08/05/96	50	1.12	μg/g		1.1
CMW14	Beryllium	CMW141255	08/05/96	55	1.26	μg/g		1.1
CMW14	Beryllium	CMW141360	08/06/96	60	1.47	μg/g		1.1
CMW14	Cadmium	CMW140101	08/05/96	1	0.429	μg/g		0
CMW14	Cadmium	CMW140205	08/05/96	5	0.383	μg/g		0
CMW14	Cadmium	CMW140205	08/05/96	5	0.418	μg/g	D	0
CMW14	Cadmium	CMW140310	08/05/96	10	0.236	μg/g		0
CMW14	Cadmium	CMW140415	08/05/96	15	0.351	μg/g		0
CMW14	Cadmium	CMW140520	08/05/96	20	0.3	μg/g		0
CMW14	Cadmium	CMW140625	08/05/96	25	0.457	μg/g		0
CMW14	Cadmium	CMW140730	08/05/96	30	0.388	μg/g		0
CMW14	Cadmium	CMW140835	08/05/96	35	0.412	μg/g		0
CMW14	Cadmium	CMW140940	08/05/96	40	0.413	µg∕g		0
CMW14	Cadmium	CMW141045	08/05/96	45	0.429	μg/g		0
CMW14	Cadmium	CMW141150	08/05/96	50	0.411	μg/g		0
CMW14	Cadmium	CMW141255	08/05/96	55	0.406	µg/g		0
CMW14	Cadmium	CMW141360	08/06/96	60	0.305	μg/g		0
CMW14	Chromium	CMW140101	08/05/96	1	22.7	µg/g		17
CMW14	Chromium	CMW140205	08/05/96	5	21.3	µg/g		17
CMW14	Chromium	CMW140205	08/05/96	5	24.7	µg/g	D	17
CMW14	Chromium	CMW140415	08/05/96	15	22	μg/g		17
CMW14	Chromium	CMW140520	08/05/96	20	21.3	μg/g		17
CMW14	Chromium	CMW140625	08/05/96	25	30.1	μg/g		17
CMW14	Chromium	CMW140730	08/05/96	30	23.7	μg/g		17
CMW14	Chromium	CMW140835	08/05/96	35	24.5	μg/g		17
CMW14	Chromium	CMW141045	08/05/96	45	20.5	μg/g		17
CMW14	Chromium	CMW141150	08/05/96	50	28.6	μg/g		17

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

t

Boring	Parar	neter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW14	Chromium		CMW141255	08/05/96	55	20.9	μg/g		17
CMW14	Chromium		CMW141360	08/06/96	60	23.8	μg/g		17
CMW14	Cobalt		CMW140101	08/05/96	1	8.15	μg/g		6.5
CMW14	Cobalt		CMW140205	08/05/96	5	7.97	μg/g		6.5
CMW14	Cobalt		CMW140205	08/05/96	5	7.87	μg/g	D	6.5
CMW14	Cobalt		CMW140520	08/05/96	20	7.57	μg/g		6.5
CMW14	Cobalt		CMW140625	08/05/96	25	9.07	μg/g		6.5
CMW14	Cobalt		CMW140730	08/05/96	30	8.79	μg/g		6.5
CMW14	Cobalt		CMW140835	08/05/96	35	8.87	μg/g		6.5
CMW14	Cobalt		CMW140940	08/05/96	40	11.1	μg/g		6.5
CMW14	Cobalt		CMW141045	08/05/96	45	12.4	μg/g		6.5
CMW14	Cobalt		CMW141150	08/05/96	50	12.1	μg/g		6.5
CMW14	Cobalt		CMW141255	08/05/96	55	9.11	µg/g		6.5
CMW14	Cobalt		CMW141360	08/06/96	60	8.93	µg/g		6.5
CMW14	Copper		CMW140101	08/05/96	1	45.9	µg/g		18.9
CMW14	Copper		CMW140205	08/05/96	5	21.4	μg/g		18.9
CMW14	Copper		CMW140205	08/05/96	5	20.7	μg/g	D	18.9
CMW14	Iron		CMW140101	08/05/96	1	22600	µg/g		17647.3
CMW14	Iron		CMW140205	08/05/96	5	19000	μg/g		17647.3
CMW14	Iron		CMW140205	08/05/96	5	21400	μg/g	D	17647.3
CMW14	Iron		CMW140415	08/05/96	15	20800	µg/g		17647.3
CMW14	Iron		CMW140520	08/05/96	20	18500	μg/g		17647.3
CMW14	Iron		CMW140625	08/05/96	25	28200	μg/g		17647.3
CMW14	Iron		CMW140730	08/05/96	30	24400	μg/g		17647.3
CMW14	Iron		CMW140835	08/05/96	35	26500	μg/g		17647.3
CMW14	Iron		CMW140940	08/05/96	40	29700	μg/g		17647.3
CMW14	Iron		CMW141045	08/05/96	45	30700	μg/g		17647.3
CMW14	Iron		CMW141150	08/05/96	50	31400	μg/g		17647.3

ESPS 05-FWDA OB/OD PHASE IB 1-12/21/99

ı.

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW14	Iron		CMW141255	08/05/96	55	27400	μg/g		17647.3
CMW14	Iron		CMW141360	08/06/96	60	28500	μg/g		17647.3
CMW14	Lead		CMW140835	08/05/96	35	14.8	μg/g		12.5
CMW14	Lead		CMW140940	08/05/96	40	13	μg/g		12.5
CMW14	Lead		CMW141045	08/05/96	45	12.8	μg/g		12.5
CMW14	Lead		CMW141150	08/05/96	50	14	μg/g		12.5
CMW14	Manganese		CMW140101	08/05/96	1	694	μg/g		458.1
CMW14	Manganese		CMW140205	08/05/96	5	803	μg/g		458.1
CMW14	Manganese		CMW140205	08/05/96	5	730	µg/g	D	458.1
CMW14	Manganese		CMW140310	08/05/96	10	836	μg/g		458.1
CMW14	Manganese		CMW140415	08/05/96	15	697	μg/g		458.1
CMW14	Manganese		CMW140520	08/05/96	20	758	μg/g		458.1
CMW14	Manganese		CMW140625	08/05/96	25	502	µg/g		458.1
CMW14	Manganese		CMW140730	08/05/96	30	526	μg/g		458.1
CMW14	Manganese		CMW140835	08/05/96	35	482	µg/g		458.1
CMW14	Manganese		CMW141255	08/05/96	55	632	μg/g		458.1
CMW14	Manganese		CMW141360	08/06/96	60	760	µg/g		458.1
CMW14	Molybdenum		CMW140101	08/05/96	1	1.39	µg/g	JP	0
CMW14	Molybdenum		CMW140205	08/05/96	5	3.07	µg/g	JP	0
CMW14	Molybdenum		CMW140205	08/05/96	5	2.06	µg/g	DJP	0
CMW14	Molybdenum		CMW140310	08/05/96	10	1.49	µg/g	JP	0
CMW14	Molybdenum		CMW140415	08/05/96	15	1.66	µg/g	JP	0
CMW14	Molybdenum		CMW140520	08/05/96	20	1.24	μg/g	JP	0
CMW14	Molybdenum		CMW140835	08/05/96	35	2.51	μg/g	JP	0
CMW14	Molybdenum		CMW141150	08/05/96	50	2.97	μg/g	JP	0
CMW14	Molybdenum		CMW141360	08/06/96	60	1.39	μg/g	JP	0
CMW14	Nickel		CMW140101	08/05/96	1	21.7	μg/g		14.3
CMW14	Nickel		CMW140205	08/05/96	5	21	μg/g		14.3

,

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ackground ncentration	Flag Codes	Units	Value	Depth	Sample Date	Site ID	Parameter		Boring
CMW14NickelCMW140415 $08/05/96$ 15 16.6 $\mu g/g$ CMW14NickelCMW140520 $08/05/96$ 20 20.3 $\mu g/g$ CMW14NickelCMW140625 $08/05/96$ 25 20.6 $\mu g/g$ CMW14NickelCMW140730 $08/05/96$ 30 20.4 $\mu g/g$ CMW14NickelCMW140835 $08/05/96$ 35 20.8 $\mu g/g$ CMW14NickelCMW140940 $08/05/96$ 40 24.7 $\mu g/g$ CMW14NickelCMW141055 $08/05/96$ 50 26.2 $\mu g/g$ CMW14NickelCMW141150 $08/05/96$ 55 21.5 $\mu g/g$ CMW14NickelCMW141255 $08/05/96$ 55 21.5 $\mu g/g$ CMW14NickelCMW141255 $08/05/96$ 55 21.5 $\mu g/g$ CMW14NickelCMW140205 $08/05/96$ 5 0.537 $\mu g/g$ CMW14VanadiumCMW140205 $08/05/96$ 5 31.7 $\mu g/g$ CMW14VanadiumCMW140205 $08/05/96$ 5 31.7 $\mu g/g$ CMW14VanadiumCMW140625 $08/05/96$ 35 57.5 $\mu g/g$ CMW14VanadiumCMW140625 $08/05/96$ 35 57.5 $\mu g/g$ CMW14VanadiumCMW140835 $08/05/96$ 40 96.9 $\mu g/g$ CMW14VanadiumCMW14085 $08/05/96$ 55 72.3 $\mu g/g$ <	14.3	D	ца/а	20.9	5	08/05/96	CMW140205	Nickel	Nickel	CMW14
CMW14 Nickel CMW140520 08/05/96 20 20.3 µg/g CMW14 Nickel CMW140625 08/05/96 25 20.6 µg/g CMW14 Nickel CMW140730 08/05/96 30 20.4 µg/g CMW14 Nickel CMW140835 08/05/96 30 20.8 µg/g CMW14 Nickel CMW140835 08/05/96 40 24.7 µg/g CMW14 Nickel CMW141045 08/05/96 45 25.2 µg/g CMW14 Nickel CMW141150 08/05/96 50 26.2 µg/g CMW14 Nickel CMW141255 08/05/96 50 25.3 µg/g CMW14 Nickel CMW140205 08/05/96 5 0.537 µg/g JP CMW14 Nadium CMW140205 08/05/96 1 33.4 µg/g D CMW14 Vanadium CMW14020 08/05/96 5 31.7 µg/g	14.3	_								
CMW14 Nickel CMW14025 08/05/96 25 20.6 µg/g CMW14 Nickel CMW140730 08/05/96 30 20.4 µg/g CMW14 Nickel CMW14035 08/05/96 35 20.8 µg/g CMW14 Nickel CMW14040 08/05/96 40 24.7 µg/g CMW14 Nickel CMW14045 08/05/96 50 26.2 µg/g CMW14 Nickel CMW141150 08/05/96 55 21.5 µg/g CMW14 Nickel CMW141255 08/05/96 5 0.537 µg/g CMW14 Nickel CMW14025 08/05/96 5 0.537 µg/g CMW14 Nickel CMW140205 08/05/96 5 0.537 µg/g CMW14 Vanadium CMW14020 08/05/96 5 31.7 µg/g CMW14 Vanadium CMW140520 08/05/96 30 42.4 µg/g CMW14	14.3						CMW140520			
CMW14 Nickel CMW140730 08/05/96 30 20.4 µg/g CMW14 Nickel CMW140835 08/05/96 35 20.8 µg/g CMW14 Nickel CMW140940 08/05/96 40 24.7 µg/g CMW14 Nickel CMW1401045 08/05/96 45 25.2 µg/g CMW14 Nickel CMW141150 08/05/96 55 21.5 µg/g CMW14 Nickel CMW141150 08/05/96 55 21.5 µg/g CMW14 Nickel CMW140205 08/05/96 5 0.537 µg/g JP CMW14 Vanadium CMW140205 08/05/96 1 33.4 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140730 08/05/96 30 42.4 µg/g D CMW14 Vanadium CMW140730 08/05/96 35 57.5 µg/g D CMW14 Vanadium CMW140730	14.3			20.6		08/05/96	CMW140625	Nickel	Nickel	CMW14
CMW14 Nickel CMW140835 08/05/96 35 20.8 µg/g CMW14 Nickel CMW140940 08/05/96 40 24.7 µg/g CMW14 Nickel CMW141045 08/05/96 45 25.2 µg/g CMW14 Nickel CMW141150 08/05/96 50 26.2 µg/g CMW14 Nickel CMW141255 08/05/96 50 25.3 µg/g CMW14 Nickel CMW141360 08/05/96 5 0.537 µg/g JP CMW14 Nackel CMW140205 08/05/96 5 0.537 µg/g D CMW14 Vanadium CMW140205 08/05/96 1 33.4 µg/g D CMW14 Vanadium CMW140205 08/05/96 20 48.8 µg/g CMW14 Vanadium CMW140730 08/05/96 30 42.4 µg/g CMW14 Vanadium CMW140730 08/05/96 35 57.5 <td>14.3</td> <td></td> <td></td> <td>20.4</td> <td></td> <td>08/05/96</td> <td>CMW140730</td> <td>Nickel</td> <td>Nickel</td> <td>CMW14</td>	14.3			20.4		08/05/96	CMW140730	Nickel	Nickel	CMW14
CMW14 Nickel CMW140940 08/05/96 40 24.7 µg/g CMW14 Nickel CMW141045 08/05/96 45 25.2 µg/g CMW14 Nickel CMW141105 08/05/96 50 26.2 µg/g CMW14 Nickel CMW141125 08/05/96 55 21.5 µg/g CMW14 Nickel CMW140205 08/05/96 60 25.3 µg/g CMW14 Vanadium CMW140205 08/05/96 5 0.537 µg/g JP CMW14 Vanadium CMW140205 08/05/96 1 33.4 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW14020 08/05/96 20 48.8 µg/g CMW14 Vanadium CMW14052 08/05/96 35 57.5 µg/g CMW14 Vanadium CMW140835 08/05/96 35 57.5 µg/g CMW14 Vanadium CMW140940 08/05/96 45	14.3			20.8	35	08/05/96	CMW140835	Nickel	Nickel	CMW14
CMW14 Nickel CMW141045 08/05/96 45 25.2 µg/g CMW14 Nickel CMW141150 08/05/96 50 26.2 µg/g CMW14 Nickel CMW141255 08/05/96 55 21.5 µg/g CMW14 Nickel CMW141255 08/05/96 60 25.3 µg/g CMW14 Nickel CMW140205 08/05/96 5 0.537 µg/g JP CMW14 Vanadium CMW140205 08/05/96 5 0.537 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140250 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140730 08/05/96 30 42.4 µg/g Q CMW14 Vanadium CMW140835 08/05/96 35 57.5 µg/g Q CMW14 Vanadi	14.3			24.7	40	08/05/96	CMW140940	Nickel	Nickel	CMW14
CMW14 Nickel CMW141150 08/05/96 50 26.2 µg/g CMW14 Nickel CMW141255 08/05/96 55 21.5 µg/g CMW14 Nickel CMW141255 08/05/96 60 25.3 µg/g CMW14 RDX CMW140205 08/05/96 5 0.537 µg/g JP CMW14 Vanadium CMW140205 08/05/96 1 33.4 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140520 08/05/96 30 42.4 µg/g P CMW14 Vanadium CMW140730 08/05/96 35 57.5 µg/g P CMW14 Vanadium CMW140940 08/05/96 40 96.9 µg/g P CMW14	14.3			25.2	45	08/05/96	CMW141045	Nickel	Nickel	CMW14
CMW14 Nickel CMW141255 08/05/96 55 21.5 µg/g CMW14 Nickel CMW141360 08/06/96 60 25.3 µg/g CMW14 RDX CMW140205 08/05/96 5 0.537 µg/g JP CMW14 Vanadium CMW140205 08/05/96 1 33.4 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140205 08/05/96 20 48.8 µg/g D CMW14 Vanadium CMW140520 08/05/96 25 45.3 µg/g D CMW14 Vanadium CMW140625 08/05/96 30 42.4 µg/g D CMW14 Vanadium CMW140730 08/05/96 35 57.5 µg/g D CMW14 Vanadium CMW140730 08/05/96 35 57.5 µg/g D CMW14 Vanadium CMW140700 08/05/96 55 72.3 µg/g D	14.3			26.2	50	08/05/96	CMW141150	Nickel	Nickel	CMW14
CMW14 Nickel CMW141360 08/06/96 60 25.3 µg/g CMW14 RDX CMW140205 08/05/96 5 0.537 µg/g JP CMW14 Vanadium CMW140101 08/05/96 1 33.4 µg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140205 08/05/96 20 48.8 µg/g D CMW14 Vanadium CMW140520 08/05/96 25 45.3 µg/g D CMW14 Vanadium CMW140625 08/05/96 30 42.4 µg/g D CMW14 Vanadium CMW140730 08/05/96 35 57.5 µg/g D CMW14 Vanadium CMW140940 08/05/96 40 96.9 µg/g D CMW14 Vanadium CMW141055 08/05/96 55 72.3 µg/g D CMW14 Vanadium CMW141255 08/05/96 55 72.3 µg/g D	14.3			21.5	55	08/05/96	CMW141255	Nickel	Nickel	CMW14
CMW14 RDX CMW140205 08/05/96 5 0.537 μg/g JP CMW14 Vanadium CMW140101 08/05/96 1 33.4 μg/g D CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140205 08/05/96 20 48.8 µg/g D CMW14 Vanadium CMW140520 08/05/96 25 45.3 µg/g D CMW14 Vanadium CMW140625 08/05/96 30 42.4 µg/g D CMW14 Vanadium CMW140730 08/05/96 35 57.5 µg/g D CMW14 Vanadium CMW140730 08/05/96 40 96.9 µg/g D CMW14 Vanadium CMW140940 08/05/96 45 92.9 µg/g D CMW14 Vanadium CMW141150 08/05/96 55 72.3 µg/g D CMW14 Vanadium CMW141255 08/05/96 55 72.3 µg/g <td>14.3</td> <td></td> <td></td> <td>25.3</td> <td></td> <td>08/06/96</td> <td>CMW141360</td> <td>Nickel</td> <td>Nickel</td> <td>CMW14</td>	14.3			25.3		08/06/96	CMW141360	Nickel	Nickel	CMW14
CMW14 Vanadium CMW140101 08/05/96 1 33.4 µg/g CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140205 08/05/96 20 48.8 µg/g D CMW14 Vanadium CMW140520 08/05/96 25 45.3 µg/g D CMW14 Vanadium CMW140625 08/05/96 30 42.4 µg/g D CMW14 Vanadium CMW140730 08/05/96 35 57.5 µg/g D CMW14 Vanadium CMW140835 08/05/96 35 57.5 µg/g D CMW14 Vanadium CMW140940 08/05/96 40 96.9 µg/g D CMW14 Vanadium CMW141045 08/05/96 50 94.5 µg/g D CMW14 Vanadium CMW141150 08/05/96 55 72.3 µg/g D CMW14 Vanadium CMW141255 08/05/96 55 72.3 µg/g D<	0	JP		0.537	5	08/05/96	CMW140205	RDX	RDX	CMW14
CMW14 Vanadium CMW140205 08/05/96 5 31.7 µg/g D CMW14 Vanadium CMW140520 08/05/96 20 48.8 µg/g	31.3			33.4	1	08/05/96	CMW140101	Vanadium	Vanadium	CMW14
CMW14 Vanadium CMW140625 08/05/96 25 45.3 µg/g CMW14 Vanadium CMW140730 08/05/96 30 42.4 µg/g CMW14 Vanadium CMW140835 08/05/96 35 57.5 µg/g CMW14 Vanadium CMW140940 08/05/96 40 96.9 µg/g CMW14 Vanadium CMW140940 08/05/96 45 92.9 µg/g CMW14 Vanadium CMW141150 08/05/96 50 94.5 µg/g CMW14 Vanadium CMW141150 08/05/96 55 72.3 µg/g CMW14 Vanadium CMW141255 08/05/96 55 72.3 µg/g CMW14 Vanadium CMW141360 08/06/96 60 56.1 µg/g CMW14 Zinc CMW140101 08/05/96 1 30.4 µg/g CMW14 Zinc CMW140205 08/05/96 5 31 µg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 µg/g <td< td=""><td>31.3</td><td>D</td><td></td><td>31.7</td><td>5</td><td>08/05/96</td><td>CMW140205</td><td>Vanadium</td><td>Vanadium</td><td>CMW14</td></td<>	31.3	D		31.7	5	08/05/96	CMW140205	Vanadium	Vanadium	CMW14
CMW14 Vanadium CMW140730 08/05/96 30 42.4 μg/g CMW14 Vanadium CMW140835 08/05/96 35 57.5 μg/g CMW14 Vanadium CMW140940 08/05/96 40 96.9 μg/g CMW14 Vanadium CMW140940 08/05/96 45 92.9 μg/g CMW14 Vanadium CMW141045 08/05/96 50 94.5 μg/g CMW14 Vanadium CMW141255 08/05/96 55 72.3 μg/g CMW14 Vanadium CMW141360 08/05/96 60 56.1 μg/g CMW14 Vanadium CMW141360 08/05/96 1 30.4 μg/g CMW14 Zinc CMW140101 08/05/96 1 30.4 μg/g CMW14 Zinc CMW140205 08/05/96 5 31 μg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 μg/g D	31.3		μg/g	48.8	20	08/05/96	CMW140520	Vanadium	Vanadium	CMW14
CMW14 Vanadium CMW140730 08/05/96 30 42.4 µg/g CMW14 Vanadium CMW140835 08/05/96 35 57.5 µg/g CMW14 Vanadium CMW140940 08/05/96 40 96.9 µg/g CMW14 Vanadium CMW140940 08/05/96 45 92.9 µg/g CMW14 Vanadium CMW141150 08/05/96 50 94.5 µg/g CMW14 Vanadium CMW141255 08/05/96 55 72.3 µg/g CMW14 Vanadium CMW141360 08/05/96 60 56.1 µg/g CMW14 Vanadium CMW140101 08/05/96 1 30.4 µg/g CMW14 Zinc CMW140101 08/05/96 5 31 µg/g CMW14 Zinc CMW140205 08/05/96 5 31 µg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 µg/g D	31.3		μg/g	45.3	25	08/05/96	CMW140625	Vanadium	Vanadium	CMW14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.3		μg/g	42.4	30	08/05/96	CMW140730	Vanadium	Vanadium	CMW14
CMW14 Vanadium CMW140940 08/05/96 40 96.9 µg/g CMW14 Vanadium CMW141045 08/05/96 45 92.9 µg/g CMW14 Vanadium CMW141150 08/05/96 50 94.5 µg/g CMW14 Vanadium CMW141255 08/05/96 55 72.3 µg/g CMW14 Vanadium CMW141360 08/06/96 60 56.1 µg/g CMW14 Zinc CMW140101 08/05/96 1 30.4 µg/g CMW14 Zinc CMW140205 08/05/96 5 31 µg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 µg/g D	31.3		μg/g	57.5	35	08/05/96	CMW140835	Vanadium	Vanadium	CMW14
CMW14 Vanadium CMW141045 08/05/96 45 92.9 µg/g CMW14 Vanadium CMW141150 08/05/96 50 94.5 µg/g CMW14 Vanadium CMW141255 08/05/96 55 72.3 µg/g CMW14 Vanadium CMW141360 08/06/96 60 56.1 µg/g CMW14 Zinc CMW140101 08/05/96 1 30.4 µg/g CMW14 Zinc CMW140205 08/05/96 5 31 µg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 µg/g D	31.3			96.9	40	08/05/96	CMW140940	Vanadium	Vanadium	CMW14
CMW14 Vanadium CMW141255 08/05/96 55 72.3 μg/g CMW14 Vanadium CMW141260 08/06/96 60 56.1 μg/g CMW14 Zinc CMW140101 08/05/96 1 30.4 μg/g CMW14 Zinc CMW140205 08/05/96 5 31 μg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 μg/g D	31.3			92.9	45	08/05/96	CMW141045	Vanadium	Vanadium	CMW14
CMW14 Vanadium CMW141255 08/05/96 55 72.3 μg/g CMW14 Vanadium CMW141360 08/06/96 60 56.1 μg/g CMW14 Zinc CMW140101 08/05/96 1 30.4 μg/g CMW14 Zinc CMW140205 08/05/96 5 31 μg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 μg/g D	31.3		µg/g	94.5	50	08/05/96	CMW141150	Vanadium	Vanadium	CMW14
CMW14 Vanadium CMW141360 08/06/96 60 56.1 µg/g CMW14 Zinc CMW140101 08/05/96 1 30.4 µg/g CMW14 Zinc CMW140205 08/05/96 5 31 µg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 µg/g D	31.3			72.3	55	08/05/96	CMW141255	Vanadium	Vanadium	CMW14
CMW14 Zinc CMW140101 08/05/96 1 30.4 µg/g CMW14 Zinc CMW140205 08/05/96 5 31 µg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 µg/g D	31.3			56.1	60	08/06/96	CMW141360	Vanadium	Vanadium	CMW14
CMW14 Zinc CMW140205 08/05/96 5 31 μg/g CMW14 Zinc CMW140205 08/05/96 5 35.7 μg/g D	29.2			30.4	1	08/05/96	CMW140101	Zinc	Zinc	CMW14
CMW14 Zinc CMW140205 08/05/96 5 35.7 µg/g D	29.2			31	5	08/05/96	CMW140205	Zinc	Zinc	CMW14
	29.2	D		35.7	5	08/05/96	CMW140205	Zinc	Zinc	CMW14
CMW14 Zinc CMW140625 08/05/96 25 38.4 µg/g	29.2			38.4	25	08/05/96	CMW140625	Zinc	Zinc	
CMW14 Zinc CMW140730 08/05/96 30 37.8 µg/g	29.2			37.8		08/05/96	CMW140730	Zinc	Zinc	

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

,

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW14	Zinc		CMW140835	08/05/96	35	43	μg/g		29.2
CMW14	Zinc		CMW140940	08/05/96	40	44.4	μg/g		29.2
CMW14	Zinc		CMW141045	08/05/96	45	47.2	μg/g		29.2
CMW14	Zinc		CMW141150	08/05/96	50	46.7	μg/g		29.2
CMW14	Zinc		CMW141255	08/05/96	55	35.3	μg/g		29.2
CMW14	Zinc		CMW141360	08/06/96	60	38	μg/g		29.2
CMW15	Antimony		CMW150203	08/09/96	3	19	μg/g	JP	0
CMW15	Barium		CMW150203	08/09/96	3	1800	μg/g		430.7
CMW15	Cadmium		CMW150101	08/09/96	1	0.229	μg/g		0
CMW15	Cadmium		CMW150203	08/09/96	3	0.262	μg/g		0
CMW15	Copper		CMW150101	08/09/96	1	22.8	μg/g		18.9
CMW15	Copper		CMW150203	08/09/96	3	37.5	μg/g		18.9
CMW15	Iron		CMW150203	08/09/96	3	17900	μg/g		17647.3
CMW15	Lead		CMW150203	08/09/96	3	16	μg/g		12.5
CMW15	Manganese		CMW150203	08/09/96	3	492	μg/g		458.1
CMW15	Molybdenum		CMW150203	08/09/96	3	1.25	μg/g	JP	0
CMW15	Zinc		CMW150203	08/09/96	3	48.5	μg/g		29.2
CMW16	Antimony		CMW160101	08/29/96	1	4.87	μg/g	JP	0
CMW16	Antimony		CMW160310	08/29/96	10	5.29	μg/g	JP	0
CMW16	Antimony		CMW160415	08/29/96	15	5.75	μg/g	JP	0
CMW16	Arsenic		CMW160101	08/29/96	1	11.8	μg/g		2.7
CMW16	Arsenic		CMW160205	08/29/96	5	5.62	μg/g		2.7
CMW16	Arsenic		CMW160310	08/29/96	10	2.98	μg/g		2.7
CMW16	Barium		CMW160415	08/29/96	15	1200	μg/g		430.7
CMW16	Beryllium		CMW160310	08/29/96	10	1.66	μg/g		1.1
CMW16	Beryllium		CMW160415	08/29/96	15	1.19	μg/g		1.1
CMW16	Cadmium		CMW160101	08/29/96	1	0.0776	μg/g	JP	0
CMW16	Chromium		CMW160310	08/29/96	10	26.2	μg/g		17

•

t

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW16	Chromium		CMW160415	08/29/96	15	24.8	μg/g		17
CMW16	Cobalt		CMW160101	08/29/96	1	14.2	μg/g		6.5
CMW16	Cobalt		CMW160310	08/29/96	10	6.93	μg/g		6.5
CMW16	Cobalt		CMW160415	08/29/96	15	8.97	μg/g		6.5
CMW16	Iron		CMW160101	08/29/96	1	55000	μg/g		17647.3
CMW16	Iron		CMW160205	08/29/96	5	38600	μg/g		17647.3
CMW16	Iron		CMW160310	08/29/96	10	25700	μg/g		17647.3
CMW16	Iron		CMW160415	08/29/96	15	18800	μg/g		17647.3
CMW16	Lead		CMW160101	08/29/96	1	18	μg/g		12.5
CMW16	Lead		CMW160205	08/29/96	5	36	. σ σ μg/g		12.5
CMW16	Lead		CMW160310	08/29/96	10	13.3	μg/g		12.5
CMW16	Lead		CMW160415	08/29/96	15	12.6	μg/g		12.5
CMW16	Manganese		CMW160101	08/29/96	1	1170	μg/g		458.1
CMW16	Manganese		CMW160205	08/29/96	5	553	µg/g		458.1
CMW16	Nickel		CMW160310	08/29/96	10	16.7	μg/g		14.3
CMW16	Thallium		CMW160101	08/29/96	1	1.08	μg/g	JP	0
CMW16	Vanadium		CMW160310	08/29/96	10	54.2	μg/g		31.3
CMW16	Vanadium		CMW160415	08/29/96	15	39.5	μg/g		31.3
CMW16	Zinc		CMW160101	08/29/96	1	88.5	μg/g		29.2
CMW16	Zinc		CMW160205	08/29/96	5	185	μg/g		29.2
CMW16	Zinc		CMW160310	08/29/96	10	33.4	μg/g		29.2
CMW16	Zinc		CMW160415	08/29/96	15	34.4	μg/g		29.2
CMW17	Arsenic		CMW170310	08/16/96	10	3.34	μg/g		2.7
CMW17	Arsenic		CMW170310	08/16/96	10	3.99	μg/g	D	2.7
CMW17	Arsenic		CMW170415	08/16/96	15	3.36	μg/g		2.7
CMW17	Arsenic		CMW170735	08/16/96	35	5.04	μg/g		2.7
CMW17	Arsenic		CMW170840	08/16/96	40	6.8	μg/g		2.7
CMW17	Arsenic		CMW170945	08/16/96	45	23.2	μg/g		2.7

PMC

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

1

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW17	Arsenic	CMW171052	08/17/96	52	7.44	µg/g		2.7
CMW17	Barium	CMW170310	08/16/96	10	556	μg/g		430.7
CMW17	Barium	CMW170310	08/16/96	10	1050	µg/g	D	430.7
CMW17	Barium	CMW170415	08/16/96	15	1500	μg/g		430.7
CMW17	Barium	CMW170525	08/16/96	25	680	μg/g		430.7
CMW17	Barium	CMW170630	08/16/96	30	549	µg/g		430.7
CMW17	Barium	CMW170945	08/16/96	45	946	μg/g		430.7
CMW17	Beryllium	CMW170310	08/16/96	10	1.2	μg/g		1.1
CMW17	Beryllium	CMW170525	08/16/96	25	1.15	µg/g		1.1
CMW17	Beryllium	CMW170840	08/16/96	40	1.28	μg/g		1.1
CMW17	Cadmium	CMW170101	08/16/96	1	0.0977	μg/g	JP	0
CMW17	Cadmium	CMW170205	08/16/96	5	0.35	μg/g		0
CMW17	Cadmium	CMW170310	08/16/96	10	0.196	µg/g	JP	0
CMW17	Cadmium	CMW170310	08/16/96	10	0.292	μg/g	D	0
CMW17	Cadmium	CMW170415	08/16/96	15	0.221	μg/g		0
CMW17	Cadmium	CMW170525	08/16/96	25	0.307	µg∕g		0
CMW17	Cadmium	CMW170630	08/16/96	30	0.291	µg∕g		0
CMW17	Cadmium	CMW170735	08/16/96	35	0.228	μg/g		0
CMW17	Cadmium	CMW170840	08/16/96	40	0.314	µg/g		0
CMW17	Cadmium	CMW170945	08/16/96	45	0.401	μg/g		0
CMW17	Cadmium	CMW171052	08/17/96	52	0.307	µg/g		0
CMW17	Chromium	CMW170310	08/16/96	10	25.7	μg/g		17
CMW17	Chromium	CMW170310	08/16/96	10	25.4	μg/g	D	17
CMW17	Chromium	CMW170415	08/16/96	15	25.2	μg/g		17
CMW17	Chromium	CMW170525	08/16/96	25	38.3	μg/g		17
CMW17	Chromium	CMW170630	08/16/96	30	41.5	μg/g		17
CMW17	Chromium	CMW170735	08/16/96	35	21.9	μg/g		17
CMW17	Chromium	CMW170840	08/16/96	40	47	μg/g		17

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW17	Chromium	CMW170945	08/16/96	45	25.2	μg/g		17
CMW17	Chromium	CMW171052	08/17/96	52	24.1	μg/g		17
CMW17	Cobalt	CMW170310	08/16/96	10	8.9	μg/g		6.5
CMW17	Cobalt	CMW170310	08/16/96	10	8.56	μg/g	D	6.5
CMW17	Cobalt	CMW170415	08/16/96	15	8.14	μg/g		6.5
CMW17	Cobalt	CMW170525	08/16/96	25	9.02	μg/g		6.5
CMW17	Cobalt	CMW170630	08/16/96	30	7.97	μg/g		6.5
CMW17	Cobalt	CMW170735	08/16/96	35	7.81	μg/g		6.5
CMW17	Cobalt	CMW170840	08/16/96	40	10.2	μg/g		6.5
CMW17	Cobalt	CMW170945	08/16/96	45	14.6	μg/g		6.5
CMW17	Cobalt	CMW171052	08/17/96	52	9.78	μg/g		6.5
CMW17	Copper	CMW170205	08/16/96	5	39.9	μg/g		18.9
CMW17	Copper	CMW170945	08/16/96	45	20.2	μg/g		18.9
CMW17	Iron	CMW170310	08/16/96	10	28200	μg/g		17647.3
CMW17	Iron	CMW170310	08/16/96	10	26900	μg/g	D	17647.3
CMW17	Iron	CMW170415	08/16/96	15	19600	μg/g		17647.3
CMW17	Iron	CMW170525	08/16/96	25	24500	µg/g		17647.3
CMW17	Iron	CMW170630	08/16/96	30	25700	μg/g		17647.3
CMW17	Iron	CMW170735	08/16/96	35	23200	μg/g		17647.3
CMW17	Iron	CMW170840	08/16/96	40	30800	μg/g		17647.3
CMW17	Iron	CMW170945	08/16/96	45	36600	µg/g		17647.3
CMW17	Iron	CMW171052	08/17/96	52	23700	μg/g		17647.3
CMW17	Manganese	CMW170630	08/16/96	30	481	μg/g		458.1
CMW17	Manganese	CMW170945	08/16/96	45	460	μg/g		458.1
CMW17	Manganese	CMW171052	08/17/96	52	485	μg/g		458.1
CMW17	Molybdenum	CMW170310	08/16/96	10	1.47	µg/g	JP	0
CMW17	Molybdenum	CMW170310	08/16/96	10	2.18	μg/g	DJP	0
CMW17	Molybdenum	CMW170630	08/16/96	30	1.38	μg/g	JP	0

PMC

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Boring	F	arameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW17	Nickel		CMW170310	08/16/96	10	22.7	µg/g		14.3
CMW17	Nickel		CMW170310	08/16/96	10	23.7	μg/g	D	14.3
CMW17	Nickel		CMW170415	08/16/96	15	19.7	μg/g		14.3
CMW17	Nickel		CMW170525	08/16/96	25	20.9	μg/g		14.3
CMW17	Nickel		CMW170630	08/16/96	30	21	μg/g		14.3
CMW17	Nickel		CMW170735	08/16/96	35	20.8	μg/g		14.3
CMW17	Nickel		CMW170840	08/16/96	40	28.3	μg/g		14.3
CMW17	Nickel		CMW170945	08/16/96	45	35.2	μg/g		14.3
CMW17	Nickel		CMW171052	08/17/96	52	23.6	μg/g		14.3
CMW17	Thallium		CMW170310	08/16/96	10	2.1	μg/g		0
CMW17	Thallium		CMW170310	08/16/96	10	1.69	μg/g	D	0
CMW17	Thallium		CMW170415	08/16/96	15	1.24	μg/g		0
CMW17	Thallium		CMW170525	08/16/96	25	2.02	µg/g		0
CMW17	Thallium		CMW170630	08/16/96	30	2.2	μg/g		0
CMW17	Thallium		CMW170735	08/16/96	35	1.65	μg/g		0
CMW17	Thallium		CMW170840	08/16/96	40	2	μg/g		0
CMW17	Thallium		CMW170945	08/16/96	45	3.1	μg/g		0
CMW17	Thallium		CMW171052	08/17/96	52	2.56	μg/g		0
CMW17	Vanadium		CMW170310	08/16/96	10	51.3	μg/g		31.3
CMW17	Vanadium		CMW170310	08/16/96	10	55.8	μg/g	D	31.3
CMW17	Vanadium		CMW170415	08/16/96	15	47.7	μg/g		31.3
CMW17	Vanadium		CMW170630	08/16/96	30	37.1	μg/g		31.3
CMW17	Vanadium		CMW170735	08/16/96	35	44.3	μg/g		31.3
CMW17	Vanadium		CMW170840	08/16/96	40	63.6	μg/g		31.3
CMW17	Vanadium		CMW170945	08/16/96	45	117	µg/g		31.3
CMW17	Vanadium		CMW171052	08/17/96	52	59	μg/g		31.3
CMW17	Zinc		CMW170310	08/16/96	10	32.2	μg/g		29.2
CMW17	Zinc		CMW170310	08/16/96	10	32.2	μg/g	D	29.2

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW17	Zinc		CMW170630	08/16/96	30	32	μg/g		29.2
CMW17	Zinc		CMW170840	08/16/96	40	37.9	μg/g		29.2
CMW17	Zinc		CMW170945	08/16/96	45	45	μg/g		29.2
CMW18	Barium		CMW180520	08/19/96	20	642	μg/g	v	430.7
CMW18	Chromium		CMW180415	08/19/96	15	37.3	μg/g	v	17
CMW18	Chromium		CMW180520	08/19/96	20	25.5	μg/g	v	17
CMW18	Cobalt		CMW180520	08/19/96	20	7.57	μg/g	v	6.5
CMW18	Iron		CMW180415	08/19/96	15	20700	μg/g	v	17647.3
CMW18	Iron		CMW180520	08/19/96	20	18600	μg/g	v	17647.3
CMW18	Nickel		CMW180415	08/19/96	15	14.7	μg/g	v	14.3
CMW18	Nickel		CMW180520	08/19/96	20	16.8	μg/g	v	14.3
CMW18	Thallium		CMW180415	08/19/96	15	0.691	μg/g	VJP	0
CMW18	Thallium		CMW180520	08/19/96	20	0.713	μg/g	VJP	0
CMW18	Vanadium		CMW180415	08/19/96	15	34.4	μg/g	v	31.3
CMW18	Zinc		CMW180415	08/19/96	15	32.2	μg/g	v	29.2
CMW18	Zinc		CMW180520	08/19/96	20	30.1	µg/g	v	29.2
CMW19	Antimony		CMW190415	08/27/96	15	5.56	μg/g	JP	0
CMW19	Antimony		CMW190835	08/28/96	35	5.32	μg/g	JP	0
CMW19	Barium		CMW190310	08/27/96	10	1070	μg/g		430.7
CMW19	Beryllium		CMW190415	08/27/96	15	1.69	μg/g		1.1
CMW19	Beryllium		CMW190520	08/27/96	20	1.73	μg/g		1.1
CMW19	Beryllium		CMW190625	08/27/96	25	1.67	μg/g		1.1
CMW19	Beryllium		CMW190730	08/27/96	30	1.64	μg/g		1.1
CMW19	Beryllium		CMW190835	08/28/96	35	1.27	μg/g		1.1
CMW19	Beryllium		CMW190940	08/28/96	40	1.45	μg/g		1.1
CMW19	Cadmium		CMW190101	08/27/96	1	0.205	μg/g	JP	0
CMW19	Cadmium		CMW190205	08/27/96	5	0.16	μg/g	JP	0
CMW19	Chromium		CMW190415	08/27/96	15	40.7	μg/g		17

Page 24 of 41

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

.

PMC

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW19	Chromium	CMW190520	08/27/96	20	49	μg/g		17
CMW19	Chromium	CMW190625	08/27/96	25	78.9	μg/g		17
CMW19	Chromium	CMW190730	08/27/96	30	48.7	μg/g		17
CMW19	Chromium	CMW190835	08/28/96	35	37.8	μg/g		17
CMW19	Chromium	CMW190940	08/28/96	40	43.9	μg/g		17
CMW19	Cobalt	CMW190415	08/27/96	15	13	μg/g		6.5
CMW19	Cobalt	CMW190520	08/27/96	20	12.5	μg/g		6.5
CMW19	Cobalt	CMW190625	08/27/96	25	12.2	μg/g		6.5
CMW19	Cobalt	CMW190730	08/27/96	30	12	μg/g		6.5
CMW19	Cobalt	CMW190835	08/28/96	35	9.11	μg/g		6.5
CMW19	Cobalt	CMW190940	08/28/96	40	13.4	μg/g		6.5
CMW19	Copper	CMW190101	08/27/96	1	27.4	μg/g		18.9
CMW19	Соррег	CMW190205	08/27/96	5	24.3	μg/g		18.9
CMW19	Iron	CMW190415	08/27/96	15	36300	μg/g		17647.3
CMW19	Iron	CMW190520	08/27/96	20	38100	μg/g		17647.3
CMW19	Iron	CMW190625	08/27/96	25	36400	μg/g		17647.3
CMW19	Iron	CMW190730	08/27/96	30	34900	µg/g		17647.3
CMW19	Iron	CMW190835	08/28/96	35	32900	µg/g		17647.3
CMW19	Iron	CMW190940	08/28/96	40	36900	μg/g		17647.3
CMW19	Lead	CMW190415	08/27/96	15	13.6	µg/g		12.5
CMW19	Lead	CMW190520	08/27/96	20	14	μg/g		12.5
CMW19	Lead	CMW190625	08/27/96	25	14.6	μg/g		12.5
CMW19	Lead	CMW190730	08/27/96	30	12.9	μg/g		12.5
CMW19	Lead	CMW190835	08/28/96	35	13.8	μg/g		12.5
CMW19	Lead	CMW190940	08/28/96	40	15.5	μg/g		12.5
CMW19	Manganese	CMW190205	08/27/96	5	813	μg/g		458.1
CMW19	Manganese	CMW190310	08/27/96	10	651	μg/g		458.1
CMW19	Manganese	CMW190415	08/27/96	15	527	μg/g		458.1

ı.

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW19	Manganese	CMW190520	08/27/96	20	584	µg/g		458.1
CMW19	Manganese	CMW190625	08/27/96	25	649	μg/g		458.1
CMW19	Manganese	CMW190730	08/27/96	30	612	μg/g		458.1
CMW19	Nickel	CMW190415	08/27/96	15	28.1	μg/g		14.3
CMW19	Nickel	CMW190520	08/27/96	20	28.2	μg/g		14.3
CMW19	Nickel	CMW190625	08/27/96	25	27.2	μg/g		14.3
CMW19	Nickel	CMW190730	08/27/96	30	25.8	μg/g		14.3
CMW19	Nickel	CMW190835	08/28/96	35	24.7	μg/g		14.3
CMW19	Nickel	CMW190940	08/28/96	40	27.5	μg/g		14.3
CMW19	Selenium	CMW190835	08/28/96	35	0.72	μg/g	JP	0.4
CMW19	Thallium	CMW190205	08/27/96	5	0.565	μg/g	JP	0
CMW19	Thallium	CMW190520	08/27/96	20	0.842	μg/g	JP	0
CMW19	Thallium	CMW190625	08/27/96	25	0.942	μg/g	JP	0
CMW19	Thallium	CMW190730	08/27/96	30	0.798	μg/g	JP	0
CMW19	Thallium	CMW190835	08/28/96	35	0.742	µg∕g	JP	0
CMW19	Thallium	CMW190940	08/28/96	40	0.898	µg/g	JP	0
CMW19	Vanadium	CMW190415	08/27/96	15	53.5	μg/g		31.3
CMW19	Vanadium	CMW190520	08/27/96	20	87.2	μg/g		31.3
CMW19	Vanadium	CMW190625	08/27/96	25	60.2	µg/g		31.3
CMW19	Vanadium	CMW190730	08/27/96	30	44.2	µg/g		31.3
CMW19	Vanadium	CMW190835	08/28/96	35	47.3	μg/g		31.3
CMW19	Vanadium	CMW190940	08/28/96	40	44.9	μg/g		31.3
CMW19	Zinc	CMW190205	08/27/96	5	38.8	μg/g		29.2
CMW19	Zinc	CMW190415	08/27/96	15	50.7	μg/g		29.2
CMW19	Zinc	CMW190520	08/27/96	20	55.5	μg/g		29.2
CMW19	Zinc	CMW190625	08/27/96	25	53.3	μg/g		29.2
CMW19	Zinc	CMW190730	08/27/96	30	53.7	μg/g		29.2
CMW19	Zinc	CMW190835	08/28/96	35	47.9	μg/g		29.2

Boring	P	arameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW19	Zinc		CMW190940	08/28/96	40	60.8	µg/g		29.2
CMW20	Cadmium		CMW200101	10/05/96	1	0.68	μg/g		0
CMW20	Cadmium		CMW200205	10/05/96	5	0.241	μg/g	JP	0
CMW20	Chromium		CMW200101	10/05/96	1	17.4	μg/g		17
CMW20	Copper		CMW200101	10/05/96	1	155	μg/g		18.9
CMW20	RDX		CMW200205	10/05/96	5	1.07	μg/g	JP	0
CMW20	Silver		CMW200101	10/05/96	1	0.515	μg/g	JP	0
CMW21	Arsenic		CMW210110	07/14/98	10	4.1	μg/g		2.7
CMW21	Beryllium		CMW210110	07/14/98	10	1.15	μg/g		1.1
CMW21	Beryllium		CMW210223	07/14/98	23	1.2	μg/g		1.1
CMW21	Cadmium		CMW210110	07/14/98	10	0.0911	μg/g		0
CMW21	Iron		CMW210223	07/14/98	23	34800	μg/g		17647.3
CMW21	Manganese		CMW210223	07/14/98	23	528	μg/g		458.1
CMW21	Silver		CMW210110	07/14/98	10	0.0493	μg/g		0
CMW21	Silver		CMW210223	07/14/98	23	0.017	μg/g		0
CMW21	Thallium		CMW210110	07/14/98	10	0.322	μg/g		0
CMW21	Thallium		CMW210223	07/14/98	23	0.174	μg/g		0
CMW21	Zinc		CMW210223	07/14/98	23	39.3	μg/g		29.2
CMW22	Cadmium		CMW220110	07/31/98	10	0.0335	µg/g	D	0
CMW22	Cadmium		CMW220110	07/31/98	10	0.0332	μg/g		0
CMW22	Silver		CMW220110	07/31/98	10	0.344	μg/g	D	0
CMW22	Zinc		CMW220110	07/31/98	10	46.2	μg/g	D	29.2
CMW22	Zinc		CMW220110	07/31/98	10	42	μg/g		29.2
CMW23	Cadmium		CMW230110	08/17/98	10	0.0479	μg/g		0
CMW23	Cadmium		CMW230229	08/17/98	29	0.0343	μg/g		0
CMW23	Silver		CMW230110	08/17/98	10	0.0293	μg/g		0
CMW23	Silver		CMW230229	08/17/98	29	0.0168	μg/g		0
CMW23	Thallium		CMW230110	08/17/98	10	0.00977	μg/g		0

r

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
CMW23	Zinc		CMW230110	08/17/98	10	42.1	μg/g		29.2
CMW24	Arsenic		CMW240110	07/15/98	10	3.37	μg/g		2.7
CMW24	Beryllium		CMW240265	07/15/98	65	1.46	μg/g		1.1
CMW24	Cadmium		CMW240110	07/15/98	10	0.0737	μg/g		0
CMW24	Silver		CMW240110	07/15/98	10	0.0436	μg/g		0
CMW24	Silver		CMW240265	07/15/98	65	0.0276	μg/g		0
CMW24	Thallium		CMW240110	07/15/98	10	0.292	μg/g		0
CMW24	Thallium		CMW240265	07/15/98	65	0.352	μg/g		0
CMW24	Zinc		CMW240110	07/15/98	10	57.7	μg/g		29.2
CMW25	Cadmium		CMW250274	09/12/98	74	0.067	μg/g		0
CMW25	Manganese		CMW250274	09/12/98	74	632	μg/g		458.1
CMW25	Selenium		CMW250274	09/12/98	74	0.448	μg/g		0.4
CMW25	Silver		CMW250274	09/12/98	74	0.0357	μg/g		0
CMW25	Thallium		CMW250110	09/09/98	10	0.0137	μg/g		0
CMW25	Thallium		CMW250274	09/12/98	74	0.047	μg/g		0
KB01	Antimony		KB010305	07/25/96	5	4.98	μg/g	JP	0
KB01	Arsenic		KB010101	07/25/96	1	6.65	μg/g		2.7
KB01	Arsenic		KB010203	07/25/96	3	6.01	μg/g		2.7
KB01	Arsenic		KB010305	07/25/96	5	8.36	μg/g	D	2.7
KB01	Arsenic		KB010305	07/25/96	5	9.02	μg/g		2.7
KB01	Cobalt		KB010101	07/25/96	1	7.11	μg/g		6.5
KB01	Cobalt		KB010203	07/25/96	3	7.71	μg/g		6.5
KB01	Cobalt		KB010305	07/25/96	5	9.28	μg/g	D	6.5
KB01	Cobalt		KB010305	07/25/96	5	6.7	μg/g		6.5
KB01	Iron		KB010101	07/25/96	1	19700	μg/g		17647.3
KB01	Iron		KB010203	07/25/96	3	19400	μg/g		17647.3
KB01	Iron		KB010305	07/25/96	5	27000	μg/g	D	17647.3
KB01	Iron		KB010305	07/25/96	5	28800	μg/g		17647.3

PMC

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

.

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KB01	Lead	KB010203	07/25/96	3	13.7	μg/g		12.5
KB01	Lead	KB010305	07/25/96	5	18.5	μg/g	D	12.5
KB01	Lead	KB010305	07/25/96	5	18.6	μg/g		12.5
KB01	Molybdenum	KB010101	07/25/96	1	1.23	μg/g	JP	0
KB01	Molybdenum	KB010203	07/25/96	3	1.22	μg/g	JP	0
KB01	Phosphorus	KB010101	07/25/96	1	268	μg/g		0
KB01	Phosphorus	KB010203	07/25/96	3	260	μg/g		0
KB01	Phosphorus	KB010305	07/25/96	5	313	μg/g	Ð	0
KB01	Phosphorus	KB010305	07/25/96	5	292	μg/g		0
KB01	Vanadium	KB010101	07/25/96	1	33.8	µg/g		31.3
KB01	Vanadium	KB010203	07/25/96	3	33.5	μg/g		31.3
KB01	Vanadium	KB010305	07/25/96	5	32.2	μg/g	D	31.3
KB01	Vanadium	KB010305	07/25/96	5	36.9	μg/g		31.3
KB01	Zinc	KB010101	07/25/96	1	52.5	μg/g		29.2
KB01	Zinc	KB010203	07/25/96	3	55.4	μg/g		29.2
KB01	Zinc	KB010305	07/25/96	5	82.9	μg/g	D	29.2
KB01	Zinc	KB010305	07/25/96	5	92.4	μg/g		29.2
KB02	Antimony	KB020101	07/25/96	1	4.75	μg/g	JP	0
KB02	Antimony	KB020203	07/25/96	3	6.81	µg/g	JP	0
KB02	Arsenic	KB020101	07/25/96	1	4.02	μg/g		2.7
KB02	Arsenic	KB020203	07/25/96	3	5.09	μg/g		2.7
KB02	Arsenic	KB020305	07/25/96	5	7.32	μg/g		2.7
KB02	Lead	KB020101	07/25/96	1	15.5	μg/g		12.5
KB02	Lead	KB020203	07/25/96	3	19.8	μg/g		12.5
KB02	Molybdenum	KB020203	07/25/96	3	1.17	µg/g	JP	0
KB02	Phosphorus	KB020101	07/25/96	1	188	μg/g		0
KB02	Phosphorus	KB020203	07/25/96	3	310	μg/g		0
KB02	Phosphorus	KB020305	07/25/96	5	217	μg/g		0

٠

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KB02	Selenium	KB020203	07/25/96	3	0.424	µg/g	JP	0.4
KB02	Vanadium	KB020203	07/25/96	3	36.6	µg/g	51	31.3
KB02	Zinc	KB020101	07/25/96	1	153	μg/g		29.2
KB02	Zinc	KB020203	07/25/96	3	295	μg/g		29.2
KB02	Zinc	KB020305	07/25/96	5	83.5	μg/g		29.2
KB03	Antimony	KB030203	07/25/96	3	3.45	μg/g	JP	0
KB03	Arsenic	KB030101	07/25/96	1	5.29	μg/g		2.7
KB03	Arsenic	KB030203	07/25/96	3	8.95	μg/g		2.7
KB03	Arsenic	KB030305	07/25/96	5	9.07	μg/g		2.7
KB03	Cobalt	KB030203	07/25/96	3	7.17	μg/g		6.5
KB03	Cobalt	KB030305	07/25/96	5	7.3	μg/g		6.5
KB03	Iron	KB030203	07/25/96	3	30500	μg/g		17647.3
KB03	Iron	KB030305	07/25/96	5	32000	μg/g		17647.3
KB03	Lead	KB030203	07/25/96	3	12.7	μg/g		12.5
KB03	Lead	KB030305	07/25/96	5	36.3	μg/g		12.5
KB03	Manganese	KB030203	07/25/96	3	524	μg/g		458.1
KB03	Manganese	KB030305	07/25/96	5	557	µg/g		458.1
KB03	Molybdenum	KB030101	07/25/96	1	1.45	μg/g	JP	0
KB03	Molybdenum	KB030305	07/25/96	5	1.91	μg/g	JP	0
KB03	Phosphorus	KB030101	07/25/96	1	225	µg/g		0
KB03	Phosphorus	KB030203	07/25/96	3	278	μg/g		0
KB03	Phosphorus	KB030305	07/25/96	5	317	μg/g		0
KB03	Selenium	KB030203	07/25/96	3	0.66	μg/g		0.4
KB03	Selenium	KB030305	07/25/96	5	1.71	μg/g		0.4
KB03	Vanadium	KB030305	07/25/96	5	35.5	μg/g		31.3
KB03	Zinc	KB030101	07/25/96	1	46.9	μg/g		29.2
KB03	Zinc	KB030203	07/25/96	3	57.3	μg/g		29.2
KB03	Zinc	KB030305	07/25/96	5	391	μg/g		29.2

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KB04	Arsenic	KB040101	07/25/96	1	5.55	μg/g		2.7
KB04	Arsenic	KB040203	07/25/96	3	6.81	μg/g		2.7
KB04	Arsenic	KB040305	07/25/96	5	6.04	μg/g		2.7
KB04	Cobalt	KB040101	07/25/96	1	6.74	μg/g		6.5
KB04	Cobalt	KB040305	07/25/96	5	11.6	μg/g		6.5
KB04	Iron	KB040203	07/25/96	3	19100	μg/g		17647.3
KB04	Lead	KB040101	07/25/96	1	13	μg/g		12.5
KB04	Mercury	KB040203	07/25/96	3	0.062	μg/g	JP	0.06
KB04	Molybdenum	KB040203	07/25/96	3	2.6	μg/g	JP	0
KB04	Phosphorus	KB040101	07/25/96	1	257	μg/g		0
KB04	Phosphorus	KB040203	07/25/96	3	246	μg/g		0
KB04	Phosphorus	KB040305	07/25/96	5	241	µg/g		0
KB04	Vanadium	KB040101	07/25/96	1	32	µg/g		31.3
KB04	Zinc	KB040101	07/25/96	1	56.1	μg/g		29.2
KB04	Zinc	KB040203	07/25/96	3	49.7	μg/g		29.2
KB04	Zinc	KB040305	07/25/96	5	42.6	μg/g		29.2
KB05	4-Amino-2,6-dinitrotoluene	KB050101	07/25/96	1	0.503	μg/g	JPD	0
KB05	Arsenic	KB050101	07/25/96	1	5.25	µg/g		2.7
KB05	Arsenic	KB050101	07/25/96	1	5.8	μg/g	Ď	2.7
KB05	Arsenic	KB050203	07/25/96	3	5.35	μg/g		2.7
KB05	Arsenic	KB050305	07/25/96	5	5.19	μg/g		2.7
KB05	Cobalt	KB050101	07/25/96	1	6.62	µg/g	D	6.5
KB05	Cobalt	KB050101	07/25/96	1	7.15	μg/g		6.5
KB05	Phosphorus	KB050101	07/25/96	1	282	μg/g		0
KB05	Phosphorus	KB050101	07/25/96	1	239	μg/g	D	0
KB05	Phosphorus	KB050203	07/25/96	3	252	μg/g		0
KB05	Phosphorus	KB050305	07/25/96	5	267	μg/g		0
KB05	Zinc	KB050101	07/25/96	1	51.9	μg/g	D	29.2

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KB05	Zinc	KB050101	07/25/96	1	49.6	µg/g		29.2
KB05	Zinc	KB050203	07/25/96	3	43.6	μg/g		29.2
KB05	Zinc	KB050305	07/25/96	5	48.7	μg/g		29.2
KB06	Arsenic	KB060101	07/25/96	1	3.86	μg/g		2.7
KB06	Arsenic	KB060203	07/25/96	3	3.45	μg/g		2.7
KB06	Arsenic	KB060305	07/25/96	5	4.97	μg/g		2.7
KB06	Cadmium	KB060101	07/25/96	1	2.36	μg/g		0
KB06	Cadmium	KB060203	07/25/96	3	0.785	μg/g		0
KB06	Copper	KB060101	07/25/96	1	178	μg/g		18.9
KB06	Copper	KB060203	07/25/96	3	60.7	μg/g		18.9
KB06	Copper	KB060305	07/25/96	5	23.6	μg/g		18.9
KB06	Iron	KB060305	07/25/96	5	17700	μg/g		17647.3
KB06	Lead	KB060101	07/25/96	1	43	μg/g		12.5
KB06	Lead	KB060203	07/25/96	3	22.2	μg/g		12.5
KB06	Lead	KB060305	07/25/96	5	13.4	μg/g		12.5
KB06	Mercury	KB060101	07/25/96	1	0.0818	μg/g	JP	0.06
KB06	Molybdenum	KB060101	07/25/96	1	1.39	μg/g	JP	0
KB06	Molybdenum	KB060203	07/25/96	3	2.81	μg/g	JP	0
KB06	Phosphorus	KB060101	07/25/96	1	191	μg/g		0
KB06	Phosphorus	KB060203	07/25/96	3	194	μg/g		0
KB06	Phosphorus	KB060305	07/25/96	5	234	μg/g		0
KB06	Zinc	KB060101	07/25/96	1	536	μg/g		29.2
KB06	Zinc	KB060203	07/25/96	3	266	µg/g		29.2
KB06	Zinc	KB060305	07/25/96	5	119	μg/g		29.2
KB07	1,3,5-Trinitrobenzene	KB070203	07/25/96	3	0.804	μg/g	С	0
KB07	1,3,5-Trinitrobenzene	KB070305	07/25/96	5	0.386	μg/g	JP	0
KB07	2,4,6-Trinitrotoluene	KB070203	07/25/96	3	263	μg/g	С	0
KB07	2,4,6-Trinitrotoluene	KB070305	07/25/96	5	156	μg/g	С	0

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

,

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KB07	Arsenic	KB0 70101	07/25/96	1	3.24	µg/g		2.7
KB07	Arsenic	KB070203	07/25/96	3	3.94	<i>μg/g</i>		2.7
KB07	Arsenic	KB070305	07/25/96	5	7.68	μg/g		2.7
KB07	Cobalt	KB070305	07/25/96	5	7.67	μg/g		6.5
KB07	Iron	KB070305	07/25/96	5	31800	μg/g		17647.3
KB07	Molybdenum	KB070203	07/25/96	3	1.35	μg/g	JP	0
KB07	Phosphorus	KB070101	07/25/96	1	157	μg/g		0
KB07	Phosphorus	KB070203	07/25/96	3	150	µg/g		0
KB07	Phosphorus	KB070305	07/25/96	5	235	μg/g		0
KB07	RDX	KB070203	07/25/96	3	0.46	μg/g	JP	0
KB07	Tetryl	KB070203	07/25/96	3	0.201	μg/g	JP	0
KB07	Vanadium	KB070305	07/25/96	5	31.5	μg/g		31.3
KB07	Zinc	KB070101	07/25/96	1	39.2	μg/g		29.2
KB07	Zinc	KB070203	07/25/96	3	45.2	μg/g		29.2
KB07	Zinc	KB070305	07/25/96	5	64.9	μg/g		29.2
KB08	Antimony	KB080203	07/25/96	3	3.42	μg/g	JP	0
KB08	Antimony	KB080305	07/25/96	5	4.49	μg/g	JP	0
KB08	Arsenic	KB080101	07/25/96	1	4.46	μg/g		2.7
KB08	Arsenic	KB080203	07/25/96	3	8.18	µg/g		2.7
KB08	Arsenic	KB080305	07/25/96	5	11.7	μg/g		2.7
KB08	Barium	KB080305	07/25/96	5	1300	μg/g		430.7
KB08	Cadmium	KB080101	07/25/96	1	0.534	μg/g		0
KB08	Cobalt	KB080203	07/25/96	3	7.44	μg/g		6.5
KB08	Copper	KB080101	07/25/96	1	22.1	μg/g		18.9
KB08	Iron	KB080203	07/25/96	3	25500	μg/g		17647.3
KB08	Iron	KB080305	07/25/96	5	88000	μg/g		17647.3
KB08	Lead	KB080101	07/25/96	1	23.1	μg/g		12.5
KB08	Manganese	KB080203	07/25/96	3	497	μg/g		458.1

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KB08	Manganese	KB080305	07/25/96	5	3800	uala		458.1
KB08	Manganese	KB080303	07/25/96	1	0.14	μg/g μg/g		438.1
KB08	Molybdenum	KB080203	07/25/96	3	3.49	μg/g	JP	0.00
KB08	Molybdenum	KB080205	07/25/96	5	2.24	μg/g	JP	-0
KB08	Phosphorus	KB080101	07/25/96	1	239	μg/g	21	0
KB08	Phosphorus	KB080203	07/25/96	3	307	μg/g		ŏ
KB08	Phosphorus	KB080305	07/25/96	5	213	μg/g		0
KB08	Selenium	KB080305	07/25/96	5	0.473	µg/g	JP	0.4
KB08	Zinc	KB080101	07/25/96	1	599	μ <i>g</i> /g	51	29.2
KB08	Zinc	KB080203	07/25/96	3	65	μg/g		29.2
KB08	Zinc	KB080305	07/25/96	5	54.4	μg/g		29.2
KMW10	Antimony	KMW100310	08/22/96	10	4.28	μg/g	DJP	0
KMW10	Antimony	KMW100520	08/22/96	20	3.52	μg/g	JP	ů
KMW10	Arsenic	KMW100101	08/22/96	1	2.86	μg/g		2.7
KMW10	Arsenic	KMW100205	08/22/96	5	5.32	μg/g		2.7
KMW10	Arsenic	KMW100310	08/22/96	10	5.06	μg/g		2.7
KMW10	Arsenic	KMW100310	08/22/96	10	5.37	µg/g	D	2.7
KMW10	Arsenic	KMW100415	08/22/96	15	5.36	μg/g		2.7
KMW10	Arsenic	KMW100520	08/22/96	20	4.24	μg/g		2.7
KMW10	Arsenic	KMW100625	08/22/96	25	9.15	μg/g		2.7
KMW10	Beryllium	KMW100205	08/22/96	5	1.11	μg/g		1.1
KMW10	Cadmium	KMW100101	08/22/96	1	0.102	μg/g	JP	0
KMW10	Cobalt	KMW100205	08/22/96	5	8.2	μg/g		6.5
KMW10	Cobalt	KMW100310	08/22/96	10	7.44	μg/g		6.5
KMW10	Cobalt	KMW100310	08/22/96	10	8	μg/g	D	6.5
KMW10	Cobalt	KMW100415	08/22/96	15	7.83	μg/g		6.5
KMW10	Cobalt	KMW100625	08/22/96	25	7.35	μg/g		6.5
KMW10	Iron	KMW100205	08/22/96	5	18800	μg/g		17647.3

Page 34 of 41

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

.

PMC

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW10	Iron	KMW100625	08/22/96	25	34200	μg/g		17647.3
KMW10	Lead	KMW100205	08/22/96	5	15.1	μg/g		12.5
KMW10	Manganese	KMW100625	08/22/96	25	823	μg/g		458.1
KMW10	Phosphorus	KMW100101	08/22/96	1	154	μg/g		0
KMW10	Phosphorus	KMW100205	08/22/96	5	321	μg/g		0
KMW10	Phosphorus	KMW100310	08/22/96	10	256	μg/g		0
KMW10	Phosphorus	KMW100310	08/22/96	10	292	μg/g	D	0
KMW10	Phosphorus	KMW100415	08/22/96	15	236	μg/g		0
KMW10	Phosphorus	KMW100520	08/22/96	20	236	μg/g		0
KMW10	Phosphorus	KMW100625	08/22/96	25	245	μg/g		0
KMW10	Phosphorus	KMW100730	08/22/96	30	208	μg/g		0
KMW10	Phosphorus	KMW100835	08/22/96	35	140	μg/g		0
KMW10	Silver	KMW100205	08/22/96	5	0.571	μg/g	JP	0
KMW10	Silver	KMW100310	08/22/96	10	0.441	μg/g	JP	0
KMW10	Silver	KMW100310	08/22/96	10	0.604	μg/g	DJP	0
KMW10	Silver	KMW100415	08/22/96	15	0.45	µg∕g	JP	0
KMW10	Silver	KMW100520	08/22/96	20	0.456	µg/g	JP	0
KMW10	Silver	KMW100625	08/22/96	25	0.596	µg/g	JP	0
KMW10	Vanadium	KMW100205	08/22/96	5	41.3	μg/g		31.3
KMW10	Zinc	KMW100101	08/22/96	1	829	µg/g		29.2
KMW10	Zinc	KMW100205	08/22/96	5	132	µg/g		29.2
KMW10	Zinc	KMW100310	08/22/96	10	46.4	µg/g		29.2
KMW10	Zinc	KMW100310	08/22/96	10	49.5	μg/g	D	29.2
KMW10	Zinc	KMW100415	08/22/96	15	51.1	μg/g		29.2
KMW10	Zinc	KMW100520	08/22/96	20	31.4	μg/g		29.2
KMW10	Zinc	KMW100625	08/22/96	25	42.8	μg/g		29.2
KMW10	Zinc	KMW100730	08/22/96	30	35.8	μg/g		29.2
KMW11	4-Amino-2,6-dinitrotoluene	KMW110205	08/06/96	5	0.698	μg/g	JP	0

.

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW11	4-Amino-2,6-dinitrotoluene	KMW110205	08/06/96	5	0.635	µg/g	DJP	0
KMW11	4-Amino-2,6-dinitrotoluene	KMW110310	08/06/96	10	0.562	μg/g	JP	0
KMW11	4-Nitrotoluene	KMW110415	08/06/96	15	0.562	μg/g	JP	0
KMW11	Antimony	KMW110835	08/06/96	35	4.6	μg/g	JP	0
KMW11	Arsenic	KMW110101	08/06/96	1	3.37	μg/g		2.7
KMW11	Arsenic	KMW110205	08/06/96	5	7.82	μg/g		2.7
KMW11	Arsenic	KMW110205	08/06/96	5	6.35	μg/g	D	2.7
KMW11	Arsenic	KMW110310	08/06/96	10	5.66	μg/g		2.7
KMW11	Arsenic	KMW110415	08/06/96	15	8.47	μg/g		2.7
KMW11	Arsenic	KMW110520	08/06/96	20	12.1	μg/g		2.7
KMW11	Arsenic	KMW110625	08/06/96	25	10	μg/g		2.7
KMW11	Arsenic	KMW110730	08/06/96	30	14.1	μg/g		2.7
KMW11	Arsenic	KMW110835	08/06/96	35	13.7	μg/g		2.7
KMW11	Arsenic	KMW110940	08/06/96	40	11.8	μg/g		2.7
KMW11	Arsenic	KMW111045	08/06/96	45	5.66	μg/g		2.7
KMW11	Arsenic	KMW111150	08/06/96	50	4.39	μg/g		2.7
KMW11	Arsenic	KMW111255	08/06/96	55	6.05	μg/g		2.7
KMW11	Arsenic	KMW111358	08/07/96	58	3.38	μg/g		2.7
KMW11	Barium	KMW110730	08/06/96	30	3200	μg/g		430.7
KMW11	Barium	KMW111358	08/07/96	58	467	μg/g		430.7
KMW11	Beryllium	KMW110520	08/06/96	20	1.13	μg/g		1.1
KMW11	Beryllium	KMW110625	08/06/96	25	1.36	μg/g		1.1
KMW11	Beryllium	KMW110835	08/06/96	35	1.21	µg/g		1.1
KMW11	Beryllium	KMW110940	08/06/96	40	1.39	μg/g		1.1
KMW11	Beryllium	KMW111045	08/06/96	45	1.27	μg/g		1.1
KMW11	Beryllium	KMW111150	08/06/96	50	1.3	μg/g		1.1
KMW11	Beryllium	KMW111255	08/06/96	55	1.46	μg/g		1.1
KMW11	Beryllium	KMW111358	08/07/96	58	1.47	μg/g		1.1

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

,

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Pa	arameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW11	Cadmium		KMW110101	08/06/96	1	0.546	µg/g		0
KMW11	Cadmium		KMW110205	08/06/96	5	0.172	μg/g	JP	0
KMW11	Cadmium		KMW110205	08/06/96	5	0.222	μg/g	DJP	0
KMW11	Cadmium		KMW110310	08/06/96	10	0.164	μg/g	JP	0
KMW11	Cadmium		KMW110415	08/06/96	15	0.269	μg/g		0
KMW11	Cadmium		KMW110520	08/06/96	20	0.319	μg/g		0
KMW11	Cadmium		KMW110625	08/06/96	25	0.305	μg/g		0
KMW11	Cadmium		KMW110730	08/06/96	30	0.134	μg/g	JP	0
KMW11	Cadmium		KMW110835	08/06/96	35	0.235	μg/g	ЛЪ	0
KMW11	Cadmium		KMW110940	08/06/96	40	0.263	μg/g		0
KMW11	Cadmium		KMW111045	08/06/96	45	0.301	μg/g		0
KMW11	Cadmium		KMW111150	08/06/96	50	0.303	μg/g		0
KMW11	Cadmium		KMW111255	08/06/96	55	0.384	μg/g		0
KMW11	Cadmium		KMW111358	08/07/96	58	0.628	μg/g		0
KMW11	Chromium		KMW110415	08/06/96	15	17.2	μg/g		17
KMW11	Chromium		KMW110520	08/06/96	20	17.5	μg/g		17
KMW11	Chromium		KMW110625	08/06/96	25	20.9	μg/g		17
KMW11	Chromium		KMW110835	08/06/96	35	19.9	μg/g		17
KMW11	Chromium		KMW110940	08/06/96	40	21.7	µg/g		17
KMW11	Chromium		KMW111045	08/06/96	45	19.8	μg/g		17
KMW11	Chromium		KMW111150	08/06/96	50	24	μg/g		17
KMW11	Chromium		KMW111255	08/06/96	55	31.4	μg/g		17
KMW11	Chromium		KMW111358	08/07/96	58	41.3	µg/g		17
KMW11	Cobalt		KMW110310	08/06/96	10	6.88	μg/g		6.5
KMW11	Cobalt		KMW110415	08/06/96	15	8.99	μg/g		6.5
KMW11	Cobalt		KMW110520	08/06/96	20	11.9	μg/g		6.5
KMW11	Cobalt		KMW110625	08/06/96	25	11.9	μg/g		6.5
KMW11	Cobalt		KMW110730	08/06/96	30	9.8	μg/g		6.5

.

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW11	Cobalt	KMW110835	08/06/96	35	11.9	μg/g		6.5
KMW11	Cobalt	KMW110940	08/06/96	40	10.3	μg/g		6.5
KMW 11	Cobalt	KMW111045	08/06/96	45	7.92	μg/g		6.5
KMW 11	Cobalt	KMW111150	08/06/96	50	10.8	μg/g		6.5
KMW11	Cobalt	KMW111255	08/06/96	55	11.7	μg/g		6.5
KMW11	Cobalt	KMW111358	08/07/96	58	12.5	μg/g		6.5
KMW11	Iron	KMW110205	08/06/96	5	18600	μg/g		17647.3
KMW11	Iron	KMW110205	08/06/96	5	24300	μg/g	D	17647.3
KMW11	Iron	KMW110415	08/06/96	15	27200	μg/g		17647.3
KMW11	Iron	KMW110520	08/06/96	20	33300	μg/g		17647.3
KMW11	Iron	KMW110625	08/06/96	25	30300	μg/g		17647.3
KMW11	Iron	KMW110835	08/06/96	35	31900	μg/g		17647.3
KMW11	Iron	KMW110940	08/06/96	40	28700	μg/g		17647.3
KMW11	Iron	KMW111045	08/06/96	45	26300	μg/g		17647.3
KMW11	Iron	KMW111150	08/06/96	50	29100	μg/g		17647.3
KMW11	Iron	KMW111255	08/06/96	55	39100	μg/g		17647.3
KMW11	Iron	KMW111358	08/07/96	58	40300	μg/g		17647.3
KMW 11	Lead	KMW110415	08/06/96	15	13.2	μg/g		12.5
KMW11	Lead	KMW110520	08/06/96	20	16.2	μg/g		12.5
KMW11	Lead	KMW110625	08/06/96	25	13.6	μg/g		12.5
KMW11	Lead	KMW111045	08/06/96	45	14.3	μg/g		12.5
KMW11	Lead	KMW111150	08/06/96	50	15.5	μg/g		12.5
KMW11	Lead	KMW111255	08/06/96	55	14.9	μg/g		12.5
KMW11	Manganese	KMW110205	08/06/96	5	607	μg/g	D	458.1
KMW11	Manganese	KMW110625	08/06/96	25	476	μg/g		458.1
KMW11	Manganese	KMW110730	08/06/96	30	775	μg/g		458.1
KMW11	Manganese	KMW110940	08/06/96	40	664	μg/g		458.1
KMW11	Manganese	KMW111045	08/06/96	45	734	μg/g		458.1

Page 38 of 41

,

Table 3-37
Samples that Exceeded Background
Soil Borings
Current OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW11	Manganese	KMW111150	08/06/96	50	691	μg/g		458.1
KMW11	Molybdenum	KMW110101	08/06/96	1	2.12	μg/g	JP	0
KMW11	Molybdenum	KMW110205	08/06/96	5	1.41	μg/g	JP	0
KMW11	Molybdenum	KMW110205	08/06/96	5	2.21	μg/g	DJP	0
KMW11	Molybdenum	KMW110310	08/06/96	10	3.15	μg/g	JP	0
KMW11	Molybdenum	KMW110520	08/06/96	20	2.74	μg/g	JP	0
KMW11	Molybdenum	KMW110835	08/06/96	35	2.72	μg/g	JP	0
KMW11	Molybdenum	KMW110940	08/06/96	40	1.41	μg/g	JP	0
KMW11	Molybdenum	KMW111045	08/06/96	45	2.91	μg/g	JP	0
KMW11	Molybdenum	KMW111150	08/06/96	50	2.35	μg/g	JP	0
KMW11	Molybdenum	KMW111255	08/06/96	55	2.64	μg/g	JP	0
KMW11	Nickel	KMW110415	08/06/96	15	26.4	μg/g		14.3
KMW11	Nickel	KMW110520	08/06/96	20	28.8	μg/g		14.3
KMW11	Nickel	KMW110625	08/06/96	25	27.2	μg/g		14.3
KMW11	Nickel	KMW110730	08/06/96	30	19.1	μg/g		14.3
KMW11	Nickel	KMW110835	08/06/96	35	27.8	μg/g		14.3
KMW11	Nickel	KMW110940	08/06/96	40	26.4	µg/g		14.3
KMW11	Nickel	KMW111045	08/06/96	45	23.2	μg/g		14.3
KMW11	Nickel	KMW111150	08/06/96	50	26.1	μg/g		14.3
KMW11	Nickel	KMW111255	08/06/96	55	32.8	µg∕g		14.3
KMW11	Nickel	KMW111358	08/07/96	58	30.4	μg/g		14.3
KMW11	Phosphorus	KMW110101	08/06/96	1	237	µg/g		0
KMW11	Phosphorus	KMW110205	08/06/96	5	315	µg/g		0
KMW11	Phosphorus	KMW110205	08/06/96	5	436	μg/g	D	0
KMW11	Phosphorus	KMW110310	08/06/96	10	270	μg/g		0
KMW11	Phosphorus	KMW110415	08/06/96	15	432	μg/g		0
KMW11	Phosphorus	KMW110520	08/06/96	20	496	μg/g		0
KMW11	Phosphorus	KMW110625	08/06/96	25	524	μg/g		0

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

1

_

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW11	Phosphorus	KMW110730	08/06/96	30	431	µg/g		0
KMW11	Phosphorus	KMW110835	08/06/96	35	527	μg/g		0
KMW11	Phosphorus	KMW110940	08/06/96	40	702	μg/g		0
KMW11	Phosphorus	KMW111045	08/06/96	45	583	μg/g		0
KMW11	Phosphorus	KMW111150	08/06/96	50	575	μg/g		0
KMW11	Phosphorus	KMW111255	08/06/96	55	476	μg/g		0
KMW11	Phosphorus	KMW111358	08/07/96	58	646	μg/g		0
KMW11	Selenium	KMW110101	08/06/96	1	0.636	μg/g	JP	0.4
KMW11	Selenium	KMW110205	08/06/96	5	0.618	μg/g		0.4
KMW11	Selenium	KMW110205	08/06/96	5	0.501	μg/g	DJP	0.4
KMW11	Selenium	KMW110310	08/06/96	10	0.488	μg/g	JP	0.4
KMW11	Thallium	KMW110415	08/06/96	15	0.674	μg/g	JP	0
KMW11	Thallium	KMW110835	08/06/96	35	0.89	μg/g	JP	0
KMW11	Thallium	KMW110940	08/06/96	40	1.08	μg/g	JP	0
KMW1 1	Thallium	KMW111045	08/06/96	45	1.03	μg/g	JP	0
KMW11	Thallium	KMW111150	08/06/96	50	0.926	µg/g	JP	0
KMW11	Thallium	KMW111255	08/06/96	55	1.33	μg/g		0
KMW 11	Thallium	KMW111358	08/07/96	58	1.41	μg/g		0
KMW11	Vanadium	KMW110415	08/06/96	15	66.5	μg/g		31.3
KMW11	Vanadium	KMW110520	08/06/96	20	84.6	μg/g		31.3
KMW11	Vanadium	KMW110625	08/06/96	25	88.7	μg/g		31.3
KMW11	Vanadium	KMW110730	08/06/96	30	75.7	µg/g		31.3
KMW11	Vanadium	KMW110835	08/06/96	35	85.9	μg/g		31.3
KMW11	Vanadium	KMW110940	08/06/96	40	64.7	μg/g		31.3
KMW11	Vanadium	KMW111045	08/06/96	45	42.1	μg/g		31.3
KMW11	Vanadium	KMW111150	08/06/96	50	54.3	μg/g		31.3
KMW11	Vanadium	KMW111255	08/06/96	55	86.4	μg/g		31.3
KMW11	Vanadium	KMW111358	08/07/96	58	108	μg/g		31.3

Page 40 of 41

÷

Boring	Paramet	er Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration
KMW11	Zinc	KMW110101	08/06/96	1	84.6	μg/g		29.2
KMW11	Zinc	KMW110205	08/06/96	5	45.6	μg/g		29.2
KMW11	Zinc	KMW110205	08/06/96	5	50.1	μg/g	D	29.2
KMW11	Zinc	KMW110310	08/06/96	10	43.3	μg/g		29.2
KMW11	Zinc	KMW110415	08/06/96	15	37.1	μg/g		29.2
KMW11	Zinc	KMW110520	08/06/96	20	43	μg/g		29.2
KMW11	Zinc	KMW110625	08/06/96	25	46	μg/g		29.2
KMW11	Zinc	KMW110730	08/06/96	30	32.5	μg/g		29.2
KMW11	Zinc	KMW110835	08/06/96	35	43.8	μg/g		29.2
KMW11	Zinc	KMW110940	08/06/96	40	40.6	μg/g		29.2
KMW11	Zinc	KMW111045	08/06/96	45	36.7	μg/g		29.2
KMW11	Zinc	KMW111150	08/06/96	50	41.8	μg/g		29.2
KMW11	Zinc	KMW111255	08/06/96	55	51.4	μg/g		29.2
KMW11	Zinc	KMW111358	08/07/96	58	53.8	μg/g		29.2

Notes:

 $\mu g/g = micrograms per gram.$

Flagging Codes:

- C Analysis was confirmed.
- D Duplicate analysis.
- J Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

V - Sample subjected to unusual storage/preservation conditions.

1

Table 3-38
Samples that Exceeded Screening Criteria
Soil Borings
Closed OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
CMW02	Iron		CMW020310	08/01/96	10	26200	μg/g		17647.3	23000
CMW03	Arsenic		CMW030101	08/09/96	1	4.72	μg/g	J	2.7	0.39
CMW04	Arsenic		CMW040520	08/02/96	20	3.21	μg/g	D	2.7	0.39
CMW04	Iron		CMW040520	08/02/96	20	23600	μg/g	D	17647.3	23000
CMW04	Iron		CMW040625	08/02/96	25	23800	μg/g		17647.3	23000
CMW04	Iron		CMW040940	08/02/96	40	26400	μg/g		17647.3	23000
CMW04	Iron		CMW041045	08/02/96	45	25500	μg/g		17647.3	23000
CMW04	Iron		CMW041150	08/02/96	50	28600	μg/g		17647.3	23000
CMW04	Iron		CMW041570	08/03/96	70	32000	μg/g		17647.3	23000
CMW04	Iron		CMW041675	08/03/96	75	32200	μg/g		17647.3	23000
CMW04	Iron		CMW041780	08/03/96	80	31600	μg/g		17647.3	23000
CMW04	Iron		CMW041884	08/03/96	84	31000	μg/g		17647.3	23000
CMW06	Arsenic		CMW060101	08/09/96	1	3.48	µg/g		2.7	0.39
CMW06	Arsenic		CMW060415	08/09/96	15	3.31	µg/g		2.7	0.39
CMW06	Iron		CMW060101	08/09/96	1	24700	µg/g		17647.3	23000
CMW06	Iron		CMW060415	08/09/96	15	34300	µg/g		17647.3	23000
CMW07	Arsenic		CMW070310	08/10/96	10	3.55	µg/g	J	2.7	0.39
CMW07	Iron		CMW070835	08/10/96	35	23300	µg/g		17647.3	23000
CMW07	Iron		CMW070940	08/10/96	40	26400	μg/g		17647.3	23000
CMW07	Iron		CMW071045	08/10/96	45	26000	µg/g		17647.3	23000
CMW10	Arsenic		CMW100101	08/03/96	1	2.91	µg/g		2.7	0.39
CMW10	Arsenic		CMW100520	08/03/96	20	3	µg/g		2.7	0.39
CMW10	Iron		CMW100625	08/05/96	25	23300	μg/g		17647.3	23000
CMW14	Arsenic		CMW140520	08/05/96	20	4.21	μg/g		2.7	0.39
CMW14	Arsenic		CMW140625	08/05/96	25	4.26	μg/g		2.7	0.39
CMW14	Arsenic		CMW140730	08/05/96	30	6.71	μg/g		2.7	0.39
CMW14	Arsenic		CMW140835	08/05/96	35	5.76	μg/g		2.7	0.39
CMW14	Arsenic		CMW140940	08/05/96	40	11.7	μg/g		2.7	0.39
CMW14	Arsenic		CMW141045	08/05/96	45	15.8	μg/g		2.7	0.39
CMW14	Arsenic		CMW141150	08/05/96	50	15.2	μg/g		2.7	0.39

.

PMC

Table 3-38 Samples that Exceeded Screening Criteria Soil Borings Closed OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
CMW14	Arsenic	CMW141255	08/05/96	55	13.6	μg/g		2.7	0.39
CMW14	Arsenic	CMW141360	08/06/96	60	10.9	μg/g		2.7	0.39
CMW14	Iron	CMW140625	08/05/96	25	28200	μg/g		17647.3	23000
CMW14	Iron	CMW140730	08/05/96	30	24400	μg/g		17647.3	23000
CMW14	Iron	CMW140835	08/05/96	35	26500	μg/g		17647.3	23000
CMW14	Iron	CMW140940	08/05/96	40	29700	μg/g		17647.3	23000
CMW14	Iron	CMW141045	08/05/96	45	30700	μg/g		17647.3	23000
CMW14	Iron	CMW141150	08/05/96	50	31400	μg/g		17647.3	23000
CMW14	Iron	CMW141255	08/05/96	55	27400	μg/g		17647.3	23000
CMW14	Iron	CMW141360	08/06/96	60	28500	μg/g		17647.3	23000
CMW16	Arsenic	CMW160101	08/29/96	1	11.8	μg/g		2.7	0.39
CMW16	Arsenic	CMW160205	08/29/96	5	5.62	μg/g		2.7	0.39
CMW16	Arsenic	CMW160310	08/29/96	10	2.98	μg/g		2.7	0.39
CMW16	Iron	CMW160101	08/29/96	1	55000	µg/g		17647.3	23000
CMW16	Iron	CMW160205	08/29/96	5	38600	μg/g		17647.3	23000
CMW16	Iron	CMW160310	08/29/96	10	25700	μg/g		17647.3	23000
CMW17	Arsenic	CMW170310	08/16/96	10	3.34	µg/g		2.7	0.39
CMW17	Arsenic	CMW170310	08/16/96	10	3.99	µg/g	D	2.7	0.39
CMW17	Arsenic	CMW170415	08/16/96	15	3.36	μg/g		2.7	0.39
CMW17	Arsenic	CMW170735	08/16/96	35	5.04	µg/g		2.7	0.39
CMW17	Arsenic	CMW170840	08/16/96	40	6.8	µg/g		2.7	0.39
CMW17	Arsenic	CMW170945	08/16/96	45	23.2	µg∕g		2.7	0.39
CMW17	Arsenic	CMW171052	08/17/96	52	7.44	μg/g		2.7	0.39
CMW17	Iron	CMW170310	08/16/96	10	28200	μg/g		17647.3	23000
CMW17	Iron	CMW170310	08/16/96	10	26900	μg/g	D	17647.3	23000
CMW17	Iron	CMW170525	08/16/96	25	24500	μg/g		17647.3	23000
CMW17	Iron	CMW170630	08/16/96	30	25700	μg/g		17647.3	23000
CMW17	Iron	CMW170735	08/16/96	35	23200	μg/g		17647.3	23000
CMW17	Iron	CMW170840	08/16/96	40	30800	μg/g		17647.3	23000
CMW17	Iron	CMW170945	08/16/96	45	36600	μg/g		17647.3	23000

Page 2 of 7

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

τ.

РМС

Table 3-38
Samples that Exceeded Screening Criteria
Soil Borings
Closed OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	Paran	neter Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
	-		004 - 104						
CMW17	Iron	CMW171052		52	23700	µg/g		17647.3	23000
CMW19	Iron	CMW190415		15	36300	µg/g		17647.3	23000
CMW19	Iron	CMW190520		20	38100	μg/g		17647.3	23000
CMW19	Iron	CMW190625		25	36400	µg/g		17647.3	23000
CMW19	Iron	CMW190730		30	34900	μg/g		17647.3	23000
CMW19	Iron	CMW190835		35	32900	μg/g		17647.3	23000
CMW19	Iron	CMW190940		40	36900	μg/g		17647.3	23000
CMW21	Arsenic	CMW210110		10	4.1	µg/g		2.7	0.39
CMW21	Iron	CMW210223	07/14/98	23	34800	μg/g		17647.3	23000
CMW24	Arsenic	CMW240110	07/15/98	10	3.37	μg/g		2.7	0.39
KB01	Arsenic	KB010101	07/25/96	1	6.65	μg/g		2.7	0.39
KB01	Arsenic	KB010203	07/25/96	3	6.01	μg/g		2.7	0.39
KB01	Arsenic	KB010305	07/25/96	5	8.36	μg/g	D	2.7	0.39
KB01	Arsenic	KB010305	07/25/96	5	9.02	μg/g		2.7	0.39
KB01	Iron	KB010305	07/25/96	5	27000	μg/g	D	17647.3	23000
KB01	Iron	KB010305	07/25/96	5	28800	μg/g		17647.3	23000
KB01	Phosphorus	KB010101	07/25/96	1	268	μg/g		0	0
KB01	Phosphorus	KB010203	07/25/96	3	260	µg/g		0	0
KB01	Phosphorus	KB010305	07/25/96	5	313	μg/g	D	0	0
KB01	Phosphorus	KB010305	07/25/96	5	292	µg/g		0	0
KB02	Arsenic	KB020101	07/25/96	1	4.02	μg/g		2.7	0.39
KB02	Arsenic	KB020203	07/25/96	3	5.09	μg/g		2.7	0.39
KB02	Arsenic	KB020305	07/25/96	5	7.32	μg/g		2.7	0.39
KB02	Phosphorus	KB020101	07/25/96	1	188	μg/g		0	0
KB02	Phosphorus	KB020203	07/25/96	3	310	μg/g		0	0
KB02	Phosphorus	KB020305	07/25/96	5	217	μg/g		Õ	ů
KB03	Arsenic	KB030101	07/25/96	1	5.29	μg/g		2.7	0.39
KB03	Arsenic	KB030203	07/25/96	3	8.95	μg/g		2.7	0.39
KB03	Arsenic	KB030305	07/25/96	5	9.07			2.7	0.39
KB03				3		µg∕g µa∕a		17647.3	23000
KB03	Iron	KB030203	07/25/96	3	30500	µg/g		1/04/.3	230

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

1

PMC

(

Table 3-38 Samples that Exceeded Screening Criteria Soil Borings Closed OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

.

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
KB03	Iron	KB030305	07/25/96	5	32000	μg/g		17647.3	23000
KB03	Phosphorus	KB030101	07/25/96	1	225	μg/g		0	0
KB03	Phosphorus	KB030203	07/25/96	3	278	μg/g		0	0
KB03	Phosphorus	KB030305	07/25/96	5	317	μg/g		0	0
KB04	Arsenic	KB040101	07/25/96	1	5.55	μg/g		2.7	0.39
KB04	Arsenic	KB040203	07/25/96	3	6.81	μg/g		2.7	0.39
KB04	Arsenic	KB040305	07/25/96	5	6.04	μg/g		2.7	0.39
KB04	Phosphorus	KB040101	07/25/96	1	257	μg/g		0	0
KB04	Phosphorus	KB040203	07/25/96	3	246	μg/g		0	0
KB04	Phosphorus	KB040305	07/25/96	5	241	μg/g		0	0
KB05	Arsenic	KB050101	07/25/96	1	5.25	μg/g		2.7	0.39
KB05	Arsenic	KB050101	07/25/96	1	5.8	μg/g	D	2.7	0.39
KB05	Arsenic	KB050203	07/25/96	3	5.35	µg/g		2.7	0.39
KB05	Arsenic	KB050305	07/25/96	5	5.19	μg/g		2.7	0.39
KB05	Phosphorus	KB050101	07/25/96	1	282	μg/g		0	0
KB05	Phosphorus	KB050101	07/25/96	1	239	µg/g	D	0	0
KB05	Phosphorus	KB050203	07/25/96	3	252	µg/g		0	0
KB05	Phosphorus	KB050305	07/25/96	5	267	μg/g		0	0
KB06	Arsenic	KB060101	07/25/96	1	3.86	µg/g		2.7	0.39
KB06	Arsenic	KB060203	07/25/96	3	3.45	μg/g		2.7	0.39
KB06	Arsenic	KB060305	07/25/96	5	4.97	μg/g		2.7	0.39
KB06	Phosphorus	KB060101	07/25/96	1	191	μg/g		0	0
KB06	Phosphorus	KB060203	07/25/96	3	194	µg/g		0	0
KB06	Phosphorus	KB060305	07/25/96	5	234	μg/g		0	0
KB07	2,4,6-Trinitrotoluene	KB070203	07/25/96	3	263	µg/g	С	0	16
KB07	2,4,6-Trinitrotoluene	KB070305	07/25/96	5	156	μg/g	С	0	16
KB07	Arsenic	KB070101	07/25/96	1	3.24	μg/g		2.7	0.39
KB07	Arsenic	KB070203	07/25/96	3	3.94	μg/g		2.7	0.39
KB07	Arsenic	KB070305	07/25/96	5	7.68	μg/g		2.7	0.39
KB07	Iron	KB070305	07/25/96	5	31800	μg/g		17647.3	23000

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

•

Table 3-38
Samples that Exceeded Screening Criteria
Soil Borings
Closed OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring	P	arameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
KB07	Phosphorus		KB070101	07/25/96	1	157	μg/g		0	0
KB07	Phosphorus		KB070203	07/25/96	3	150	μg/g		0	0
KB07	Phosphorus		KB070305	07/25/96	5	235	μg/g		0	0
KB08	Arsenic		KB080101	07/25/96	1	4.46	μg/g		2.7	0.39
KB08	Arsenic		KB080203	07/25/96	3	8.18	μg/g		2.7	0.39
KB08	Arsenic		KB080305	07/25/96	5	11.7	μg/g		2.7	0.39
KB08	Iron		KB080203	07/25/96	3	25500	μg/g		17647.3	23000
KB08	Iron		KB080305	07/25/96	5	88000	μg/g		17647.3	23000
KB08	Manganese		KB080305	07/25/96	5	3800	μg/g		458.1	3200
KB08	Phosphorus		KB080101	07/25/96	1	239	μg/g		0	0
KB08	Phosphorus		KB080203	07/25/96	3	307	µg/g		0	0
KB08	Phosphorus		KB080305	07/25/96	5	213	µg/g		0	0
KMW10	Arsenic		KMW100101	08/22/96	1	2.86	µg/g		2.7	0.39
KMW10	Arsenic		KMW100205	08/22/96	5	5.32	μg/g		2.7	0.39
KMW10	Arsenic		KMW100310	08/22/96	10	5.06	μg/g		2.7	0.39
KMW10	Arsenic		KMW100310	08/22/96	10	5.37	μg/g	D	2.7	0.39
KMW10	Arsenic		KMW100415	08/22/96	15	5.36	µg/g		2.7	0.39
KMW10	Arsenic		KMW100520	08/22/96	20	4.24	µg/g		2.7	0.39
KMW10	Arsenic		KMW100625	08/22/96	25	9.15	μg/g		2.7	0.39
KMW10	Iron		KMW100625	08/22/96	25	34200	μg/g		17647.3	23000
KMW10	Phosphorus		KMW100101	08/22/96	1	154	μg/g		0	0
KMW10	Phosphorus		KMW100205	08/22/96	5	321	µg/g		0	0
KMW10	Phosphorus		KMW100310	08/22/96	10	256	µg/g		0	0
KMW10	Phosphorus		KMW100310	08/22/96	10	292	μg/g	D	0	0
KMW10	Phosphorus		KMW100415	08/22/96	15	236	μg/g		0	0
KMW10	Phosphorus		KMW100520	08/22/96	20	236	μg/g		0	0
KMW10	Phosphorus		KMW100625	08/22/96	25	245	μg/g		0	0
KMW10	Phosphorus		KMW100730	08/22/96	30	208	μg/g		0	0
KMW10	Phosphorus		KMW100835	08/22/96	35	140	μg/g		0	0
KMW11	Arsenic		KMW110101	08/06/96	1	3.37	μg/g		2.7	0.39

Table 3-38 Samples that Exceeded Screening Criteria Soil Borings Closed OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Boring	Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
	. <u></u>	· · · · · · · · · · · · · · · · · · ·				<u>.</u>		· ····	
KMW11	Arsenic	KMW110205	08/06/96	5	7.82	µg/g	_	2.7	0.39
KMW11	Arsenic	KMW110205	08/06/96	5	6.35	µg/g	D	2.7	0.39
KMW11	Arsenic	KMW110310	08/06/96	10	5.66	μg/g		2.7	0.39
KMW11	Arsenic	KMW110415	08/06/96	15	8.47	µg/g		2.7	0.39
KMW11	Arsenic	KMW110520	08/06/96	20	12.1	µg/g		2.7	0.39
KMW11	Arsenic	KMW110625	08/06/96	25	10	µg/g		2.7	0.39
KMW11	Arsenic	KMW110730	08/06/96	30	14.1	µg/g		2.7	
KMW11	Arsenic	KMW110835	08/06/96	35	13.7	µg/g		2.7	0.39
KMW11	Arsenic	KMW110940	08/06/96	40	11.8	μg/g		2.7	0.39
KMW11	Arsenic	KMW111045	08/06/96	45	5.66	μg/g		2.7	0.39
KMW11	Arsenic	KMW111150	08/06/96	50	4.39	µg/g		2.7	0.39
KMW11	Arsenic	KMW111255	08/06/96	55	6.05	μg/g		2.7	0.39
KMW11	Arsenic	KMW111358	08/07/96	58	3.38	μg/g		2.7	0.39
KMW11	Iron	KMW110205	08/06/96	5	24300	µg/g	D	17647.3	23000
KMW11	Iron	KMW110415	08/06/96	15	27200	μg/g		17647.3	23000
KMW11	Iron	KMW110520	08/06/96	20	33300	μg/g		17647.3	23000
KMW11	Iron	KMW110625	08/06/96	25	30300	μg/g		17647.3	23000
KMW11	Iron	KMW110835	08/06/96	35	31900	μg/g		17647.3	23000
KMW11	Iron	KMW110940	08/06/96	40	28700	μg/g		17647.3	23000
KMW11	Iron	KMW111045	08/06/96	45	26300	μg/g		17647.3	23000
KMW11	Iron	KMW111150	08/06/96	50	29100	μg/g		17647.3	23000
KMW11	Iron	KMW111255	08/06/96	55	39100	μg/g		17647.3	23000
KMW11	Iron	KMW111358	08/07/96	58	40300	μg/g		17647.3	23000
KMW11	Phosphorus	KMW110101	08/06/96	1	237	μg/g		0	0
KMW11	Phosphorus	KMW110205	08/06/96	5	315	μg/g		0	0
KMW11	Phosphorus	KMW110205	08/06/96	5	436	μg/g	D	0	0
KMW11	Phosphorus	KMW110310	08/06/96	10	270	μg/g		0	0
KMW11	Phosphorus	KMW110415	08/06/96	15	432	μg/g		0	0
KMW11	Phosphorus	KMW110520	08/06/96	20	496	μg/g		ů 0	Ő
	•	KMW110520	08/06/96	25	524	<i>µв∕в</i> µв∕в		Ő	ů 0
KMW11	Phosphorus	KIVI W I 10025	00/00/90	23	J24	н£/8		v	

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

1

РМС

Table 3-38
Samples that Exceeded Screening Criteria
Soil Borings
Closed OB/OD Area Ground Water System
Fort Wingate Depot Activity
Gallup, New Mexico

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
KMW11	Phosphorus		KMW110730	08/06/96	30	431	μg/g		0	0
KMW11	Phosphorus		KMW110835	08/06/96	35	527	μg/g		0	0
KMW11	Phosphorus		KMW110940	08/06/96	40	702	μg/g		0	0
KMW11	Phosphorus		KMW111045	08/06/96	45	583	μg/g		0	0
KMW11	Phosphorus		KMW111150	08/06/96	50	575	μg/g		0	0
KMW11	Phosphorus		KMW111255	08/06/96	55	476	μg/g		0	0
KMW11	Phosphorus		KMW111358	08/07/96	58	646	μg/g		0	0

Notes:

 $\mu g/g = micrograms per gram.$

Flagging Codes:

C - Analysis was confirmed.

D - Duplicate analysis.

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

V - Sample subjected to unusual storage/preservation conditions.

.

PMC

Table 3-39 Samples that Exceeded Closure Performance Standards Soil Borings Current OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration	Closure Performance Standards Contentration
KB01	Phosphorus		KB010101	07/25/96	1	268	μg/g		0	0	0
KB01	Phosphorus		KB010203	07/25/96	3	260	μg/g		0	0	Ō
KB01	Phosphorus		KB010305	07/25/96	5	313	μg/g	D	0	0	0
KB01	Phosphorus		KB010305	07/25/96	5	292	μg/g		0	0	0
KB02	Phosphorus		KB020101	07/25/96	1	188	μg/g		0	0	0
KB02	Phosphorus		KB020203	07/25/96	3	310	μg/g		0		0
KB02	Phosphorus		KB020305	07/25/96	5	217	μg/g		0	0	0
KB03	Phosphorus		KB030101	07/25/96	I	225	μg/g		0	0	0
KB03	Phosphorus		KB030203	07/25/96	3	278	μg/g		0	0	0
KB03	Phosphorus		KB030305	07/25/96	5	317	μg/g		0	0	0
KB04	Phosphorus		KB040101	07/25/96	1	257	μg/g		0		0
KB04	Phosphorus		KB040203	07/25/96	3	246	μg/g		0	0	0
KB04	Phosphorus		KB040305	07/25/96	5	241	μg/g		0	0	0
KB05	Phosphorus		KB050101	07/25/96	1	282	μg/g		0	0	0
KB05	Phosphorus		KB050101	07/25/96	1	239	μg/g	D	0	0	0
KB05	Phosphorus		KB050203	07/25/96	3	252	μg/g		0	0	0
KB05	Phosphorus		KB050305	07/25/96	5	267	μg/g		0	0	0
KB06	Phosphorus		KB060101	07/25/96	1	191	μg/g		0	0	0
KB06	Phosphorus		KB060203	07/25/96	3	194	μg/g		0	0	0
KB06	Phosphorus		KB060305	07/25/96	5	234	μg/g		0	0	0
KB07	Phosphorus		KB070101	07/25/96	1	157	μg/g		0	0	0
KB07	Phosphorus		KB070203	07/25/96	3	150	μg/g		0	0	0
KB07	Phosphorus		KB070305	07/25/96	5	235	μg/g		0	0	0
KB08	Manganese		KB080305	07/25/96	5	3800	μg/g		458.1	3200	460
KB08	Phosphorus		KB080101	07/25/96	1	239	µg∕g		0	0	0
KB08	Phosphorus		KB080203	07/25/96	3	307	µg/g		0	0	0
KB08	Phosphorus		KB080305	07/25/96	5	213	μg/g		0	0	0
KMW10	Phosphorus		KMW100101	08/22/96	1	154	μg/g		0	0	0
KMW10	Phosphorus		KMW100205	08/22/96	5	321	µg/g		0	0	0
KMW10	Phosphorus		KMW100310	08/22/96	10	256	μg/g		0	0	0
KMW10	Phosphorus		KMW100310	08/22/96	10	292	µg/g	D	0	0	0

,

Table 3-39 Samples that Exceeded Closure Performance Standards Soil Borings Current OB/OD Area Ground Water System Fort Wingate Depot Activity Gallup, New Mexico

Boring		Parameter	Site ID	Sample Date	Depth	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration	Closure Performance Standards Contentration
KMW10	Phosphorus		KMW100415	08/22/96	15	236	μg/g		0	0	0
KMW10	Phosphorus		KMW100520	08/22/96	20	236	μg/g		0	0	0
KMW10	Phosphorus		KMW100625	08/22/96	25	245	μg/g		0	0	0
KMW10	Phosphorus		KMW100730	08/22/96	30	208	μg/g		0	0	0
KMW10	Phosphorus		KMW100835	08/22/96	35	140	μg/g		0	0	0
KMW11	Phosphorus		KMW110101	08/06/96	1	237	μg/g		0	0	0
KMW11	Phosphorus		KMW110205	08/06/96	5	315	μg/g		0	0	0
KMW11	Phosphorus		KMW110205	08/06/96	5	436	μg/g	D	0	0	0
KMW11	Phosphorus		KMW110310	08/06/96	10	270	μg/g		0	0	0
KMW11	Phosphorus		KMW110415	08/06/96	15	432	μg/g		0	0	0
KMW11	Phosphorus		KMW110520	08/06/96	20	496	μg/g		0	0	0
KMW11	Phosphorus		KMW110625	08/06/96	25	524	μg/g		0	0	0
KMW11	Phosphorus		KMW110730	08/06/96	30	431	μg/g		0	0	0
KMW11	Phosphorus		KMW110835	08/06/96	35	527	μg/g		0	0	0
KMW11	Phosphorus		KMW110940	08/06/96	40	702	μg/g		0	0	0
KMW11	Phosphorus		KMW111045	08/06/96	45	583	μg/g		0	0	0
KMW11	Phosphorus		KMW111150	08/06/96	50	575	µg/g		0	0	0
KMW11	Phosphorus		KMW111255	08/06/96	55	476	μg/g		0	0	0
KMW11	Phosphorus		KMW111358	08/07/96	58	646	µg∕g		0	0	0

Notes:

μg/g = micrograms per gram. Flagging Codes: D - Duplicate analysis. 1

РМС

Table 3-40
Samples that Exceeded Background
Sediments
Closed OB/OD Area
Fort Wingate Depot Activity
Gallup, New Mexico

Site	Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
KSED02	Barium	08/08/96	536	μg/g		374
KSED02	Copper	08/08/96	13.3	μg/g		13.1
KSED02	Manganese	08/08/96	626	μg/g		54
KSED02	Nickel	08/08/96	12.8	µg/g		12.
KSED02	Phosphorus	08/08/96	393	μg/g		28
KSED04	Barium	08/08/96	475	μg/g		37-
KSED04	Phosphorus	08/08/96	294	μg/g		28
KSED05	Arsenic	08/08/96	12	μg/g	J	9.9
KSED05	Nickel	08/08/96	12.8	μg/g		12.
KSED05	Phosphorus	08/08/96	288	μg/g		28
KSED05	Thallium	08/08/96	2.67	μg/g	J	2.5
KSED06	Arsenic	08/08/96	110	μg/g	J	9.9
KSED06	Beryllium	08/08/96	1.94	μg/g		1.0
KSED06	Cobalt	08/08/96	12.3	μg/g		9.9
KSED06	Lead	08/08/96	20.7	μg/g		1
KSED06	Manganese	08/08/96	647	μg/g	J	54
KSED06	Phosphorus	08/08/96	316	µg/g		28
KSED06	Thallium	08/08/96	11	μg/g	J	2.5
KSED07	Phosphorus	08/08/96	321	μg/g		28
KSED08	Cadmium	08/08/96	0.27	μg/g		0.26
KSED09	Arsenic	08/08/96	10.3	μg/g	J	9.9
KSED09	Barium	08/08/96	640	μg/g		37-
KSED09	Cadmium	08/08/96	0.501	μg/g	J	0.26
KSED09	Manganese	08/08/96	835	µg/g		54
KSED09	Phosphorus	08/08/96	396	μg/g		28
KSED09	Vanadium	08/08/96	36.8	μg/g		33.
KSED10	Arsenic	08/08/96	27.5	μg/g	J	9.94
KSED10	Beryllium	08/08/96	1.82	μg/g		1.03

,

(

Table 3-40 Samples that Exceeded Background Sediments Closed OB/OD Area Fort Wingate Depot Activity Gallup, New Mexico

Site		Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
KSED10	Cadmium		08/08/96	1.3	μg/g	JP	0.265
KSED10	Copper		08/08/96	134	μg/g		13.1
KSED10	Lead		08/08/96	25.9	μg/g		16
KSED10	Mercury		08/08/96	0.0426	μg/g	JP	0
KSED10	Phosphorus		08/08/96	374	μg/g		284
KSED10	Thallium		08/08/96	13	μg/g		2.56
KSED10	Zinc		08/08/96	123	μg/g		87.7

Notes:

 $\mu g/g = micrograms per gram.$

Flagging Codes:

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

Table 3-41
Samples that Exceeded Screening Criteria
Sediments
Closed OB/OD Area
Fort Wingate Depot Activity
Gallup, New Mexico

Site		Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
KSED02	Phosphorus		08/08/96	393	μg/g		284	0
KSED04	Phosphorus		08/08/96	294	μg/g		284	0
KSED05	Arsenic		08/08/96	12	μg/g	J	9.94	0.39
KSED05	Phosphorus		08/08/96	288	μg/g		284	0
KSED06	Arsenic		08/08/96	110	μg/g	J	9.94	0.39
KSED06	Phosphorus		08/08/96	316	μg/g		284	0
KSED06	Thallium		08/08/96	11	μg/g	J	2.56	6.3
KSED07	Phosphorus		08/08/96	321	μg/g		284	0
KSED09	Arsenic		08/08/96	10.3	μg/g	J	9.94	0.39
KSED09	Phosphorus		08/08/96	396	μg/g		284	0
KSED10	Arsenic		08/08/96	27.5	μg/g	J	9.94	0.39
KSED10	Phosphorus		08/08/96	374	μg/g		284	0
KSED10	Thallium		08/08/96	13	μg/g		2.56	6.3

Notes:

µg/g = micrograms per gram.

Flagging Codes:

J - Value is estimated.

,

e . .

Table 3-42Samples that Exceeded Closure Performance StandardsSedimentsClosed OB/OD AreaFort Wingate Depot ActivityGallup, New Mexico

Site		Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration	Closure Performance Standards Contentration
KSED02	Phosphorus		08/08/96	393	μg/g		284	0	0
KSED04	Phosphorus		08/08/96	294	μg/g		284	0	0
KSED05	Phosphorus		08/08/96	288	μg/g		284	0	0
KSED06	Arsenic		08/08/96	110	μg/g	J	9.94	0.39	44.2
KSED06	Phosphorus		08/08/96	316	μg/g		284	0	0
KSED07	Phosphorus		08/08/96	321	μg/g		284	0	0
KSED09	Phosphorus		08/08/96	396	μg/g		284	0	0
KSED10	Phosphorus		08/08/96	374	μg/g		284	0	0

Notes:

μg/g = micrograms per gram. Flagging Codes:

J - Value is estimated.

.

PMC

Table 3-43
Samples that Exceeded Background
Surface Water
Closed OB/OD Area
Fort Wingate Depot Activity
Gallup, New Mexico

Site	Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
KSW02	2.6-Dinitrotoluene	08/08/96	2.4	µg/l	Q	(
KSW02	Antimony	08/08/96	1.02	μg/l	×	(
SW04	Aluminum	08/08/96	280000	μg/l		17100
KSW04	Chromium	08/08/96	330	μg/l		27
SW04	Iron	08/08/96	250000	μg/I		14900
KSW04	Mercury	08/08/96	0.925	μg/l		0.53
CSW04	Phosphorus	08/08/96	8000	μg/l		290
KSW04	Thallium	08/08/96	7.46	μg/l		6.
CSW04	Vanadium	08/08/96	810	μg/i		63
(SW05	Aluminum	08/08/96	376000	μg/l		17100
SW05	Cadmium	08/08/96	5.38	μg/l		4.5
CSW05	Cobalt	08/08/96	260	μg/l		230
CSW05	Iron	08/08/96	366000	µg/l		14900
CSW05	Manganese	08/08/96	6100	μg/l		520
SW05	Mercury	08/08/96	1.33	μg/l		0.53
CSW05	Nickel	08/08/96	290	μg/l		250
SW05	Selenium	08/08/96	25.6	μg/l		22.
SW05	Thallium	08/08/96	6.88	μg/l		6.1
SW05	Vanadium	08/08/96	670	μg/l		630
SW06	Aluminum	08/08/96	175000	μg/l		171000
SW06	Arsenic	08/08/96	340	μg/l		130
SW06	Cadmium	08/08/96	8.39	μg/l		4.53
SW06	Chromium	08/08/96	900	μg/l		270
SW06	Cobalt	08/08/96	500	μg/l		230
SW06	Copper	08/08/96	940	μg/l		460
SW06	Lead	08/08/96	1100	μg/l		54(
(SW06	Manganese	08/08/96	11000	μg/l		5200
SW06	Nickel	08/08/96	590	μg/l		250
SW06	Selenium	08/08/96	57	μg/l		22.1
SW06	Silver	08/08/96	5.52	μg/l		2.88
SW06	Thallium	08/08/96	19.1	μg/l		6.8
SW06	Vanadium	08/08/96	2000	μg/l		630

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

,

-··.

Table 3-43 Samples that Exceeded Background Surface Water Closed OB/OD Area Fort Wingate Depot Activity Gallup, New Mexico

Site	Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
KSW06	Zinc	08/08/96	4200	μg/l		1900
KSW07	Aluminum	08/08/96	352000	μg/1		171000
KSW07	Iron	08/08/96	295000	μg/l		149000
KSW07	Mercury	08/08/96	1.89	μg/l		0.537
KSW07	Phosphorus	08/08/96	11000	μg/l		2900
KSW08	Aluminum	08/08/96	481000	μg/l		171000
KSW08	Iron	08/08/96	405000	μg/l		149000
KSW09	Antimony	08/08/96	1.23	μg/l		0
KSW09	Arsenic	08/08/96	270	μg/l		130
KSW09	Cadmium	08/08/96	32.1	μg/l		4.53
KSW09	Chromium	08/08/96	670	μg/l		270
KSW09	Cobalt	08/08/96	600	μg/l		230
KSW09	Copper	08/08/96	1400	μg/l		460
KSW09	Iron	08/08/96	155000	μg/l		149000
KSW09	Lead	08/08/96	1100	μg/l		540
KSW09	Manganese	08/08/96	14000	μg/l		5200
KSW09	Mercury	08/08/96	0.601	μg/l		0.537
KSW09	Nickel	08/08/96	730	μg/l		250
KSW09	Phosphorus	08/08/96	4200	μg/l		2900
KSW09	Selenium	08/08/96	71.1	μg/l		22.1
KSW09	Silver	08/08/96	5.13	μg/l		2.88
KSW09	Thallium	08/08/96	12	μg/1		6.8
KSW09	Vanadium	08/08/96	1500	μg/l		630
KSW09	Zinc	08/08/96	5200	μg/l		1900

Notes:

µg/1 = micrograms per liter.

Flagging Codes:

Q - Sample interference obscured peak of interest.

Table 3-44 Samples that Exceeded Background Sediments Current OB/OD Area Fort Wingate Depot Activity Gallup, New Mexico

Site		Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
CSED04	Vanadium		10/30/96	37.1	μg/g		25.
CSED05	Beryllium		10/30/96	1.03	μg/g		0.77
CSED05	Cadmium		10/30/96	0.638	μg/g		0.21
CSED05	Chromium		10/30/96	25.9	μg/g		17.
CSED05	Cobalt		10/30/96	7.88	μg/g		6.6
CSED05	Copper		10/30/96	73	μg/g		2
CSED05	Iron		10/30/96	20800	μg/g		1630
CSED05	Nickel		10/30/96	15	μg/g		12.
CSED05	Vanadium		10/30/96	43.6	µg∕g		25.
CSED06	Cadmium		10/30/96	1.4	μg/g		0.21
CSED06	Chromium		10/30/96	21.2	μg/g		17.
CSED06	Copper		10/30/96	107	μg/g		2
CSED06	Silver		10/30/96	1.06	μg/g	JP	
CSED06	Vanadium		10/30/96	29.1	μg/g		25.
SED07	Beryllium		09/14/96	0.827	μg/g		0.77
SED07	Beryllium		10/30/96	0.857	μg/g		0.77
SED07	Cadmium		09/14/96	1.26	μg/g	J	0.21
SED07	Cadmium		10/30/96	0.823	μg/g		0.21
SED07	Chromium		09/14/96	25.1	μg/g		17.
SED07	Chromium		10/30/96	20.1	μg/g		17.
SED07	Cobalt		09/14/96	7.13	μg/g		6.6
SED07	Cobalt		10/30/96	7.41	μg/g		6.6
SED07	Copper		09/14/96	133	μg/g		2
SED07	Copper		10/30/96	75.9	μg/g		2
SED07	Iron		09/14/96	19900	μg/g		1630
SED07	Iron		10/30/96	16500	μg/g		1630
SED07	Nickel		09/14/96	14.9	μg/g		12.:
SED07	Vanadium		09/14/96	39.5	μg/g		25.9
SED07	Vanadium		10/30/96	34.8	μg/g		25.
SED07	Zinc		09/14/96	48.8	μg/g		
SED07	Zinc		10/30/96	89.6	μg/g		(
SED08	Cadmium		09/14/96	0.626	μg/g	J	0.214

,

Page 1 of 2

Table 3-44 Samples that Exceeded Background Sediments Current OB/OD Area Fort Wingate Depot Activity Gallup, New Mexico

Site	Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
CSED08	Chromium	09/14/96	19	μg/g		17.9
CSED08	Cobalt	09/14/96	6.78	μg/g		6.62
CSED08	Соррег	09/14/96	50.9	μg/g		28
CSED08	Iron	09/14/96	18000	μg/g		16300
CSED08	Mercury	09/14/96	0.268	μg/g		0
CSED08	Vanadium	09/14/96	34.1	μg/g		25.9
CSED08	Zinc	09/14/96	70.3	μg/g		0
CSED09	Beryllium	10/30/96	1.59	μg/g		0.775
CSED09	Cadmium	10/30/96	1.8	μg/g		0.214
CSED09	Chromium	10/30/96	38.1	μg/g		17.9
CSED09	Cobalt	10/30/96	11	μg/g		6.62
CSED09	Copper	10/30/96	98.8	μg/g		28
CSED09	Iron	10/30/96	32000	μg/g		16300
CSED09	Lead	10/30/96	26.5	μg/g		18.5
CSED09	Mercury	10/30/96	0.221	μg/g	J	0
CSED09	Nickel	10/30/96	22,4	μg/g		12.5
CSED09	Thallium	10/30/96	1.39	μg/g	JP	0
CSED09	Vanadium	10/30/96	67.5	μg/g		25.9
CSED09	Zinc	10/30/96	102	μg/g		0
CSED10	Cadmium	09/14/96	0.302	μg/g	J	0.214
CSED10	Vanadium	09/14/96	29.8	μg/g		25.9
CSED10	Zinc	09/14/96	34	μg/g		0

Notes:

µg/g = micrograms per gram.

Flagging Codes:

J - Value is estimated.

JP - Value is estimated and is less than reporting level but greater than instrumental detection limit.

.

Table 3-45
Samples that Exceeded Screening Criteria
Sediments
Current OB/OD Area
Fort Wingate Depot Activity
Gallup, New Mexico

Site		Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration	Screening Level Concentration
CSED09	Iron		10/30/96	32000	µg/g		16300	23000

Notes:

 $\mu g/g = micrograms per gram.$

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

۲

Table 3-46Samples that Exceeded Closure Performance StandardsSedimentsCurrent OB/OD AreaFort Wingate Depot ActivityGallup, New Mexico

								Closure Performance
					Flag	Background	Screening Level	Standards
Site	Parameter	Sample Date	Value	Units	Codes	Concentration	Concentration	Contentration

No samples exceed closure performance standards.

Notes:

 $\mu g/g = micrograms per gram.$

,

Site	Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
CMW06	4-Amino-2,6-dinitrotoluene	02/11/97	0.278	μg/l	С	
CMW06	Arsenic	10/29/96	3.07	μg/l		2.6
CMW06	Arsenic	02/11/97	3.45	μg/l		2.6
CMW06	Arsenic	02/11/97	3.99	μg/l	F	2.6
CMW06	Cadmium	10/29/96	0.595	μg/l		0.30
CMW06	Cadmium	02/11/97	0.844	μg/l		0.30
CMW06	Manganese	10/29/96	1900	μg/l		510
CMW06	Manganese	10/29/96	950	μg/l	F	51
CMW06	Manganese	02/11/97	2300	μg/l		51
CMW06	Manganese	02/11/97	2000	μg/l	F	51
CMW06	Manganese	01/29/99	742	μg/l		51
CMW06	Manganese	02/01/99	787	μg/l	F	51
CMW06	Nickel	02/01/99	33.5	μg/l	FJP	17.
CMW06	RDX	10/29/96	0.137	μg/l	JP	1
CMW06	Zinc	02/01/99	70	μg/l	F	51.
CMW20	2,4,6-Trinitrotoluene	10/29/96	0.161	μg/l	С	
CMW20	4-Amino-2,6-dinitrotoluene	02/11/97	0.248	μg/l	С	
CMW20	Aluminum	10/29/96	138000	μg/l		2920
CMW20	Aluminum	02/11/97	86400	μg/l		2920
CMW20	Arsenic	10/29/96	5.62	μg/l		2.6
CMW20	Arsenic	02/11/97	4.52	μg/l		2.6
CMW20	Cadmium	10/29/96	1.32	μg/l		0.30
CMW20	Cadmium	02/11/97	1.1	μg/l		0.30
CMW20	Cobalt	10/29/96	17.3	μg/l		9.2
CMW20	Copper	10/29/96	83.4	μg/l		16.1
CMW20	Copper	02/11/97	113	μg/l		16.1
CMW20	Iron	10/29/96	81700	μg/l		1930
CMW20	Iron	02/11/97	51700	μg/l		1930

Page 1 of 4

1

.

Site	Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
CMW20	Lead	10/29/96	48.3	μg/l		13.8
CMW20	Lead	02/11/97	23	μg/l		13.8
CMW20	Manganese	10/29/96	1800	μg/l		510
CMW20	Manganese	02/11/97	1300	μg/l		510
CMW20	Nickel	10/29/96	35.2	μg/l		17.5
CMW20	RDX	10/29/96	0.578	μg/l	С	0
CMW20	RDX	02/11/97	0.715	μg/l	С	0
CMW20	Silver	10/29/96	0.239	μg/l		0
CMW20	Thallium	10/29/96	0.342	μg/l		0.269
CMW20	Vanadium	10/29/96	89.6	μg/l		45.1
CMW20	Zinc	10/29/96	99.9	μg/l		51.5
CSW01	1,3-Dinitrobenzene	09/14/96	0.137	μg/l	С	0
CSW07	2,4,6-Trinitrotoluene	09/14/96	33.8	μg/l	С	0
CSW07	2-Amino-4,6-dinitrotoluene	09/14/96	1.12	μg/l	Q	0
CSW07	4-Amino-2,6-dinitrotoluene	09/14/96	2.38	µg/l	Q	0
CSW07	Aluminum	09/14/96	56500	μg/l		29200
CSW07	Antimony	09/14/96	1.05	μg/l		0
CSW07	Arsenic	09/14/96	3.03	μg/l		2.63
CSW07	Cadmium	09/14/96	2.74	μg/l		0.309
CSW07	Cobalt	09/14/96	9.43	μg/l		9.21
CSW07	Copper	09/14/96	220	μg/l		16.2
CSW07	HMX	09/14/96	4.62	μg/l	С	0
CSW07	Iron	09/14/96	36900	μg/l		19300
CSW07	Lead	09/14/96	55.3	μg/l		13.8
CSW07	Manganese	09/14/96	840	μg/l		510
CSW07	Nickel	09/14/96	22.7	μg/l		17.5
CSW07	RDX	09/14/96	19.2	μg/l	С	0
CSW07	Silver	09/14/96	0.799	μg/l		0

ESPS.05-FWDA OB/OD PHASE IB.1-12/21/99

,

Site	Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
CSW07	Zinc	09/14/96	220	μg/l		51.5
CSW08	2,4,6-Trinitrotoluene	09/14/96	2.5	μg/l	С	(
CSW08	2-Amino-4,6-dinitrotoluene	09/14/96	0.116	μg/l	CJP	(
CSW08	Aluminum	09/14/96	324000	μg/l		29200
CSW08	Antimony	09/14/96	1.11	μg/l		(
CSW08	Arsenic	09/14/96	36.2	μg/l		2.63
CSW08	Cadmium	09/14/96	9.5	μg/l		0.309
CSW08	Chromium	09/14/96	220	μg/l		24.8
CSW08	Cobalt	09/14/96	80.6	μg/l		9.21
CSW08	Copper	09/14/96	460	μg/l		16.2
CSW08	HMX	09/14/96	4.65	μg/l	С	(
CSW08	Iron	09/14/96	209000	μg/l		19300
CSW08	Lead	09/14/96	300	μg/l		13.8
CSW08	Manganese	09/14/96	6000	μg/l		510
CSW08	Mercury	09/14/96	2.91	μg/l		(
CSW08	Nickel	09/14/96	189	μg/l		17.:
CSW08	RDX	09/14/96	28.7	μg/l	С	(
CSW08	Selenium	09/14/96	9.46	μg/l		(
CSW08	Silver	09/14/96	2.03	μg/l		(
CSW08	Thallium	09/14/96	2.53	μg/l		0.269
CSW08	Vanadium	09/14/96	340	μg/l		45.3
CSW08	Zinc	09/14/96	1200	μg/l		51.5
CSW10	Aluminum	09/14/96	44000	μg/l		29200
CSW10	Arsenic	09/14/96	4.36	μg/1		2.6
CSW10	Cadmium	09/14/96	0.891	μg/l		0.30
CSW10	Соррег	09/14/96	42	μg/l		16.2
CSW10	Iron	09/14/96	37600	μg/l		1930
CSW10	Lead	09/14/96	16.4	μg/l		13.1

t

Site	Parameter	Sample Date	Value	Units	Flag Codes	Background Concentration
CSW10	Manganese	09/14/96	620	μg/l		510
CSW10	Silver	09/14/96	0.169	μg/l		(
CSW10	Zinc	09/14/96	82.8	μg/l		51.5
FW38	4-Amino-2,6-dinitrotoluene	02/11/97	0.349	μg/l	С	(
FW38	Cadmium	10/28/96	0.799	μg/l		0.309
FW38	Cadmium	02/11/97	1.12	μg/I		0.309
FW38	Copper	10/28/96	35.9	μg/l		16.2
FW38	Copper	02/11/97	43.8	μg/l		16.2
FW38	Lead	10/28/96	14.6	μg/l		13.8
FW38	Lead	02/11/97	23.1	μg/l		13.8
FW38	Manganese	10/28/96	690	μg/l		510
FW38	Mercury	02/11/97	0.419	μg/l		(
FW38	Nickel	10/28/96	63.7	μg/l		17.5
FW38	Nickel	10/28/96	34.4	μg/l	F	17.
FW38	Nickel	02/11/97	24.5	μg/l		17.
FW38	Nitrite, nitrate - nonspecific (as nitrogen)	08/11/97	26.3	μg/l		(
FW38	Silver	10/28/96	0.125	μg/l	F	(
FW38	Zinc	10/28/96	260	μg/l		51.:
FW38	Zinc	02/11/97	320	μg/l		51.5

Notes:

 $\mu g/l = micrograms per liter.$

Flagging Codes:

C - Analysis was confirmed.

F - Sample filtered prior to analysis.

J - Value is estimated.

ł.

4.1 CLOSED OB/OD AREA GROUND WATER SYSTEM

Within the Closed OB/OD Area ground water system a thin veneer of unconsolidated material was identified that grades into competent shale of the Mancos Shale Formation. Shallow ground water was encountered in the Mancos Shale Formation and the Dakota Sandstone Formation. An additional boring drilled into the Dakota Sandstone Formation in the location thought most likely to receive infiltration of surface water and shallow ground water, contained no free water throughout the entire thickness of the Dakota Sandstone Formation. The only constituent detected in ground water from the Mancos Shale Formation that exceeded the screening criterion and CPS was ammonia, and this is because there is no CPS for this constituent. No constituent concentrations detected in ground water from the Dakota Sandstone Formation exceed the screening criteria or CPSs. Thus, it is considered unlikely that installation activities have impacted ground water within the Mancos Shale Formation or the Dakota Sandstone Formation. It is also considered unlikely that ground water in these formations will be impacted in the future.

Future monitoring of ground water quality within the Mancos Shale Formation and the Dakota Sandstone Formation is planned. Sampling of KMW09, KMW12, and KMW13 will be conducted on a quarterly basis for the period of one year, starting in January 2000. This will allow an evaluation of seasonal changes in ground water chemistry and changes in ground water levels which may affect the direction of ground water flow. The ground water samples will be analyzed for explosives, TAL metals, nitrate, and nitrite. At the end of four quarters of ground water monitoring, the results will be compiled and potential trends evaluated. At that time, the need for continued ground water monitoring will be assessed and negotiated with the appropriate regulatory agencies.

No explosive compounds were detected at concentrations exceeding either screening criteria or CPSs in the sediment samples collected from the Closed OB/OD Area. Sediment samples contained concentrations of phosphorus exceeding the CPS; however, exceedances of the CPS for phosphorus do not necessarily represent an unacceptable risk to human health under the selected future land use scenarios. Arsenic was detected in one sample at a concentration exceeding the CPS; however, similar levels of arsenic were not detected in the sediment samples located downgradient. In the surface water samples, one explosive compound

was detected and many individual inorganic/metal constituents exceeded background levels. No constituents were present at concentrations exceeding background levels in the most downgradient surface water sample; thus, it does not appear that contaminants are being transported out of the Closed OB/OD Area via surface water flow.

4.2 CURRENT OB/OD AREA GROUND WATER SYSTEM

Within the Current OB/OD Area ground water system, a thin veneer of unconsolidated materials is present overlying a thick sequence of shale units belonging to the Chinle Formation. Water table conditions are present only within the unconsolidated materials. This shallow ground water may discharge to surface water pools within the Current OB/OD Area arroyo; however, no evidence of surface water flow has been observed since October 1996. Based upon these data, the potential of exposure to shallow ground water via its discharge to surface water is thought to be sporadic; therefore, this is not considered to be a complete exposure pathway.

Ground water flow within the undifferentiated intervals of the Chinle Formation is dominated by fracture flow. Monitoring wells contained concentrations of RDX, ammonia, cadmium, chromium, lead, and selenium that exceeded the CPSs. Ground water from these intervals is thought to be migrating through fractures to the Sonsela Sandstone Member, and then migrating generally northward following the bedrock dip and topography. Thus, potential exposure to impacted ground water within the undifferentiated Chinle Formation is addressed by the potential exposure considerations for the Sonsela Sandstone Member.

As described previously, ground water within the Painted Desert Member is controlled by the geologic structure and flows toward the north, following the bedrock dip and topography. Chromium and lead were only detected at concentrations exceeding the CPSs during the first of two sampling events; thus, the presence of inorganic constituents at concentrations exceeding the CPSs may have been a temporary condition.

Ground water flow within the Sonsela Sandstone Member is also toward the north, following the bedrock dip and topography. Ammonia, antimony, and lead were detected at concentrations exceeding the CPSs in ground water from the Sonsela Sandstone Member. As discussed above, there is no CPS for ammonia; thus, the concentration of ammonia detected in ground water from the Sonsela Sandstone Member does not warrant further action. The antimony concentration only exceeded the CPS in

CMW16. Lead concentrations exceeding the CPS were present in CMW21 and CMW23; however, these concentrations were in the total fraction only, indicating that the lead is the result of suspended particulates in the ground water rather than dissolved lead. Monitoring wells CMW21 and CMW22 are located downgradient of the lateral extent of contaminated ground water, and will provide downgradient sentinel monitoring wells screened in the Sonsela Sandstone Member.

The Entrada Sandstone Formation occurs in the northwestern portion of the Current OB/OD Area ground water system. Ground water within this formation is thought to migrate down dip toward the west. The only constituent that exceeded the CPS was ammonia, and this is because there is no CPS for this constituent. Thus, it is considered unlikely that installation activities have impacted ground water within the Entrada Sandstone Formation. It is also considered unlikely that ground water in this formation will be impacted in the future.

Extensive shale units underlying the Current OB/OD Area ground water system, being of inherently lower primary permeability than surrounding sandstone units, inhibit vertical movement of ground water to underlying potable aquifer units, such as the Glorieta Sandstone Formation. The shale units also restrict movement of potentially impacted ground water from the Current OB/OD Area down dip toward the west. Intense structural deformation associated with formation of the Hogback makes correlation of lithologic units from the eastern and central portions of the Current OB/OD Area ground water system toward the western portion not possible. This lack of correlation makes identification of the ground water flow path in a westward direction not possible. However, if limited transport of impacted ground water toward the west were to occur, it would be at a significantly greater stratigraphic depth than the overlying Dakota and Gallup Sandstone Formations, which are used as potable ground water sources in areas west of FWDA. Thus, it is considered highly unlikely that exposure to this ground water would occur; therefore, this is not considered to be a complete exposure pathway.

Future monitoring of ground water quality within the Chinle Formation, Painted Desert Member, and Sonsela Sandstone Member is planned. Sampling of CMW02, CMW16, CMW18, CMW21, CMW22, and CMW25 will be conducted on a quarterly basis for the period of one year, starting in January 2000. This will allow an evaluation of seasonal changes in ground water chemistry and changes in ground water levels that may affect the direction of ground water flow. The ground water samples will be analyzed for explosives, TAL metals, nitrate, and nitrite. At the end of four quarters of ground water monitoring, the results will be compiled

and potential trends evaluated. At that time, the need for continued ground water monitoring will be assessed and discussed with the appropriate regulatory agencies

No explosive compounds were detected in the sediment samples collected from the Current OB/OD Area. No inorganic/metal constituent concentrations detected in sediment samples collected within the Current OB/OD Area exceeded the CPSs. In the surface water and alluvial ground water samples, explosive compounds were detected and many individual inorganic/metal constituents exceeded background levels. No explosives were detected in the most downgradient sample; thus, it does not appear that explosives are being transported out of the Current OB/OD Area via surface water flow.

5.0 REFERENCES

Blackhawk Geometrics, Inc., 1999, Seismic Reflection Survey, Open-Burn/Open-Detonation Area, Fort Wingate Depot, Gallup, New Mexico.

Bouwer H. and Rice R.C., 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resources Research, v. 12, no. 3, pp. 423-428.

Driscoll, F.G., 1986. Groundwater and Wells, 2nd ed. Johnson Division, St. Paul, MN.

ERM, 1996a. Resource Conservation and Recovery Act, Final Interim Status Closure Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

ERM, 1996b. Final OB/OD Area CFP – Field Sampling Plan and Contaminated Materials Handling Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

ERM, 1996c. Final OB/OD Area CFP – Quality Assurance Project Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

ERM, 1996d. Final OB/OD Area CFP - Health and Safety Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

ERM, 1997a. Final OB/OD Area Work Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

ERM, 1997b. Final Health and Safety Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

PMC, 1998a. Final OB/OD Area Work Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

PMC, 1998b. Final Field Sampling Plan Fort Wingate Depot Activity, Gallup, New Mexico.

PMC, 1998c. Final Quality Assurance Project Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

PMC, 1998d. Final Health and Safety Plan, Fort Wingate Depot Activity, Gallup, New Mexico.

ESPS.5-FWDA OB/OD-PHASE 1B.1-00805.81-12/29/99

РМС

PMC, 1999. Phase IA Report. Final Open Burning/Open Detonation Area, RCRA Interim Status Closure Plan Phase IA - Characterization and Assessment of Site Conditions for the Soils/Solid Matrix.

Schlumberger, 1989. Log Interpretation Principles/Applications, Schlumberger Educational Services, Houston, Texas.

Telford, Geldart, Sheriff, and Keys, 1976, Applied Geophysics, Cambridge University Press, New York, New York.

USEPA, 1999. EPA Region 6 Human Health Medium-Specific Screening Levels.

FORT WINGATE DEPOT ACTIVITY GALLUP, NM

FINAL OPEN BURNING/OPEN DETONATION AREA RCRA INTERIM STATUS CLOSURE PLAN PHASE IB - CHARACTERIZATION AND ASSESSMENT OF SITE CONDITIONS FOR THE GROUND WATER MATRIX

Prepared for:

U.S. ARMY CORPS OF ENGINEERS FORT WORTH DISTRICT

Prepared by:

PROGRAM MANAGEMENT COMPANY 835 Springdale Drive, Suite 201 Exton, PA 19341-2843

Requests for this document must be referred to: Commander, U.S. Army Corps of Engineers Fort Worth District Fort Worth, TX 76102; or Commander, Tooele Army Depot, UT 84074

